首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   3篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2017年   2篇
  2015年   2篇
  2014年   4篇
  2013年   2篇
  2012年   5篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
排序方式: 共有35条查询结果,搜索用时 31 毫秒
1.
Protoplasma - Watermelon and melon are members of the Cucurbitaceae family including economically significant crops in the world. The expansin protein family, which is one of the members of the...  相似文献   
2.
Understanding the progression of periodontal tissue destruction is at the forefront of periodontal research. The authors aimed to capture the dynamics of gingival tissue proteome during the initiation and progression of experimental (ligature‐induced) periodontitis in mice. Pressure cycling technology (PCT), a recently developed platform that uses ultra‐high pressure to disrupt tissues, is utilized to achieve efficient and reproducible protein extraction from ultra‐small amounts of gingival tissues in combination with liquid chromatography‐tandem mass spectrometry (MS). The MS data are processed using Progenesis QI and the regulated proteins are subjected to METACORE, STRING, and WebGestalt for functional enrichment analysis. A total of 1614 proteins with ≥2 peptides are quantified with an estimated protein false discovery rate of 0.06%. Unsupervised clustering analysis shows that the gingival tissue protein abundance is mainly dependent on the periodontitis progression stage. Gene ontology enrichment analysis reveals an overrepresentation in innate immune regulation (e.g., neutrophil‐mediated immunity and antimicrobial peptides), signal transduction (e.g., integrin signaling), and homeostasis processes (e.g., platelet activation and aggregation). In conclusion, a PCT‐assisted label‐free quantitative proteomics workflow that allowed cataloging the deepest gingival tissue proteome on a rapid timescale and provided novel mechanistic insights into host perturbation during periodontitis progression is applied.  相似文献   
3.
Molecular and Cellular Biochemistry - Increasing evidence indicates that microRNA (miRNA) regulated mechanisms in myocardial healing and ventricular remodeling following acute myocardial infarction...  相似文献   
4.
IntroductionThis open-label pilot study aimed to investigate the efficacy of canakinumab in colchicine-resistant familial Mediterranean fever (FMF) patients.MethodPatients with one or more attacks in a month in the preceding 3 months despite colchicine were eligible to enter a 30-day run-in period. Patients who had an attack during the first run-in period advanced to a second 30-day period. At the first attack, patients started to receive three canakinumab 150 mg subcutaneous injections at 4-week intervals, and were then followed for an additional 2 months. Primary efficacy outcome measure was the proportion of patients with 50 % or more reduction in attack frequency. Secondary outcome measures included time to next attack following last canakinumab dose and changes in quality of life assessed by SF-36.ResultsThirteen patients were enrolled in the run-in period and 9 advanced to the treatment period. All 9 patients achieved a 50 % or more reduction in attack frequency, and only one patient had an attack during the treatment period. C-reactive protein and serum amyloid A protein levels remained low throughout the treatment period. Significant improvement was observed in both physical and mental component scores of the Short Form-36 at Day 8. Five patients had an attack during the 2-month follow-up, occurring median 71 (range, 31 to 78) days after the last dose. Adverse events were similar to those observed in the previous canakinumab trials.ConclusionCanakinumab was effective at controlling the attack recurrence in patients with FMF resistant to colchicine. Further investigations are warranted to explore canakinumab’s potential in the treatment of patients with colchicine resistant FMF.

Trial registration

ClinicalTrials.gov NCT01088880. Registered 16 March 2010.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0765-4) contains supplementary material, which is available to authorized users.  相似文献   
5.

Background

Turkey is a crossroads of major population movements throughout history and has been a hotspot of cultural interactions. Several studies have investigated the complex population history of Turkey through a limited set of genetic markers. However, to date, there have been no studies to assess the genetic variation at the whole genome level using whole genome sequencing. Here, we present whole genome sequences of 16 Turkish individuals resequenced at high coverage (32 × -48×).

Results

We show that the genetic variation of the contemporary Turkish population clusters with South European populations, as expected, but also shows signatures of relatively recent contribution from ancestral East Asian populations. In addition, we document a significant enrichment of non-synonymous private alleles, consistent with recent observations in European populations. A number of variants associated with skin color and total cholesterol levels show frequency differentiation between the Turkish populations and European populations. Furthermore, we have analyzed the 17q21.31 inversion polymorphism region (MAPT locus) and found increased allele frequency of 31.25% for H1/H2 inversion polymorphism when compared to European populations that show about 25% of allele frequency.

Conclusion

This study provides the first map of common genetic variation from 16 western Asian individuals and thus helps fill an important geographical gap in analyzing natural human variation and human migration. Our data will help develop population-specific experimental designs for studies investigating disease associations and demographic history in Turkey.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-963) contains supplementary material, which is available to authorized users.  相似文献   
6.
Teeth constitute a promising source of stem cells that can be used for tissue engineering and regenerative medicine purposes. Bone loss in the craniofacial complex due to pathological conditions and severe injuries could be treated with new materials combined with human dental pulp stem cells (hDPSCs) that have the same embryonic origin as craniofacial bones. Optimising combinations of scaffolds, cells, growth factors and culture conditions still remains a great challenge. In the present study, we evaluate the mineralisation potential of hDPSCs seeded on porous silk fibroin scaffolds in a mechanically dynamic environment provided by spinner flask bioreactors. Cell-seeded scaffolds were cultured in either standard or osteogenic media in both static and dynamic conditions for 47 days. Histological analysis and micro-computed tomography of the samples showed low levels of mineralisation when samples were cultured in static conditions (0.16±0.1 BV/TV%), while their culture in a dynamic environment with osteogenic medium and weekly µCT scans (4.9±1.6 BV/TV%) significantly increased the formation of homogeneously mineralised structures, which was also confirmed by the elevated calcium levels (4.5±1.0 vs. 8.8±1.7 mg/mL). Molecular analysis of the samples showed that the expression of tooth correlated genes such as Dentin Sialophosphoprotein and Nestin were downregulated by a factor of 6.7 and 7.4, respectively, in hDPSCs when cultured in presence of osteogenic medium. This finding indicates that hDPSCs are able to adopt a non-dental identity by changing the culture conditions only. Also an increased expression of Osteocalcin (1.4x) and Collagen type I (1.7x) was found after culture under mechanically dynamic conditions in control medium. In conclusion, the combination of hDPSCs and silk scaffolds cultured under mechanical loading in spinner flask bioreactors could offer a novel and promising approach for bone tissue engineering where appropriate and rapid bone regeneration in mechanically loaded tissues is required.  相似文献   
7.
8.
A novel hot spring thermophile, Anoxybacillus gonensis A4 (A. gonensis A4) was investigated in terms of capability of tributyrin degradation and characterization of its thermostable esterase activity by the hydrolysis of p-nitrophenyl butyrate (PNPB). It was observed that A. gonensis A4 has an esterase with a molecular weight of 62 kDa. The extracellular crude preparation was characterized in terms of substrate specificity, pH and temperature optima and stability, kinetic parameters and inhibition/activation behaviour towards some chemicals and metal ions. Tributyrin agar assay showed that A. gonensis A4 secreted an esterase and V(max) and K(m) values of its activity were found to be 800 U/L and 176.5 microM, respectively in the presence of PNPB substrate. The optimum temperature and pH, for A. gonensis A4 esterase was 60-80 degrees C and 5.5, respectively. Although the enzyme activity was not significantly changed by incubating crude extract solution at 30-70 degrees C for 1 h, the enzyme activity was fully lost at 80 degrees C for same incubation period. The pH-stability profile showed that original crude esterase activity increased nearly 2-fold at pH 6.0. The effect of some chemicals on crude esterase activity indicated that A. gonensis A4 produce an esterase having serine residue in active site and -SH groups were essential for its activity.  相似文献   
9.
Flavobacterium columnare is a Gram-negative, rod-shaped, motile, and highly prevalent fish pathogen causing columnaris disease in freshwater fish worldwide. Here, we present the complete genome sequence of F. columnare strain ATCC 49512.  相似文献   
10.
Oxygen free radicals are implicated in the pathophysiology of ischemia-reperfusion (I/R) injury in skeletal muscle. Nitric oxide (NO) and prostaglandin E2 (PGE2) are important regulators of the microcirculation in skeletal muscle. The effects of L-arginine, substrate for NO, and N(G)-nitro L-arginine methyl ester (L-NAME) on PGE2 synthesis, lipid peroxidation and reduced glutathione (GSH) levels was investigated in the rat gastrocnemius muscle after 3 h of reperfusion following 2 h of ischemia. Lipid peroxidation and GSH levels showed a non-significant changes in the I/R groups compared to the control group. According to these results, it can be assumed that skeletal muscle can resist 2 h of ischemia followed by 3 h of reperfusion-induced oxidative stress. PGE2-like activity in the gastrocnemius muscle increased in the L-NAME treated and I/R groups. L-arginine administration reversed the increase in PGE2-like activity of reperfused skeletal muscle. These findings support the conclusion that endothelium-derived PGE2 synthesis increases during reperfusion and suggest that PGE2 may have a protective role in the maintenance of endothelial function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号