首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   337篇
  免费   38篇
  375篇
  2022年   3篇
  2021年   7篇
  2020年   6篇
  2019年   3篇
  2018年   6篇
  2017年   5篇
  2016年   5篇
  2015年   12篇
  2014年   14篇
  2013年   18篇
  2012年   25篇
  2011年   15篇
  2010年   12篇
  2009年   10篇
  2008年   11篇
  2007年   20篇
  2006年   19篇
  2005年   11篇
  2004年   7篇
  2003年   6篇
  2002年   11篇
  2001年   10篇
  2000年   5篇
  1999年   8篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   5篇
  1994年   4篇
  1993年   7篇
  1992年   8篇
  1991年   9篇
  1990年   7篇
  1989年   2篇
  1988年   6篇
  1987年   10篇
  1986年   11篇
  1985年   6篇
  1984年   4篇
  1983年   4篇
  1980年   2篇
  1978年   3篇
  1977年   3篇
  1975年   4篇
  1972年   2篇
  1970年   2篇
  1969年   3篇
  1968年   2篇
  1967年   2篇
  1964年   1篇
排序方式: 共有375条查询结果,搜索用时 0 毫秒
1.
Nonstructural protein 5A (NS5A) of hepatitis C virus (HCV) is an indispensable component of the HCV replication and assembly machineries. Although its precise mechanism of action is not yet clear, current evidence indicates that its structure and function are regulated by the cellular peptidylprolyl isomerase cyclophilin A (CyPA). CyPA binds to proline residues in the C-terminal half of NS5A, in a distributed fashion, and modulates the structure of the disordered domains II and III. Cyclophilin inhibitors (CPIs), including cyclosporine (CsA) and its nonimmunosuppressive derivatives, inhibit HCV infection of diverse genotypes, both in vitro and in vivo. Here we report a mechanism by which CPIs inhibit HCV infection and demonstrate that CPIs can suppress HCV assembly in addition to their well-documented inhibitory effect on RNA replication. Although the interaction between NS5A and other viral proteins is not affected by CPIs, RNA binding by NS5A in cell culture-based HCV (HCVcc)-infected cells is significantly inhibited by CPI treatment, and sensitivity of RNA binding is correlated with previously characterized CyPA dependence or CsA sensitivity of HCV mutants. Furthermore, the difference in CyPA dependence between a subgenomic and a full-length replicon of JFH-1 was due, at least in part, to an additional role that CyPA plays in HCV assembly, a conclusion that is supported by experiments with the clinical CPI alisporivir. The host-directed nature and the ability to interfere with more than one step in the HCV life cycle may result in a higher genetic barrier to resistance for this class of HCV inhibitors.  相似文献   
2.
3.
A 81-fold purification of human seminal plasma acid phosphatase was obtained by a three-step procedure, involving ammonium sulfate precipitation, DEAE-cellulose chromatography and Sephadex G-200 gel filtration. Homogeneity of the preparation during purification steps was tested by polyacrylamide gel electrophoresis and only one major band was obtained after the final step. The pH optimum for the activity of the purified enzyme was 5.6 and thermal stability was obtained even up to 40 degrees C. PNPP was the most specific synthetic substrate. The Km of purified seminal acid phosphatase towards PNPP was 1.5 X 10(-3) M. Among the metal ions tested, Hg+2 showed an I50 value of 4.2 X 10(-7) M. Studies with PCMB, PMSF and EDTA did not show any inhibition, whereas NaF and L(+)tartrate, at 1 mM concentration, inhibited the enzyme by 95% and 85%, respectively.  相似文献   
4.
The effect of estradiol-17β and progesterone given separately as well as in combination on the rate of hydrogen peroxide formation and lipid peroxidation in the uteri of ovariectomized rats was studied. Estradiol in 3μg dose per day per animal elicited maximum stimulatory response and progesterone (100μg), on the other hand, was without any such effect. However, progesterone given along with estradiol completely prevented the effect due to the latter. In the same way, vitamin E, a well known antioxidant was found to be extremelv effective in protecting the uterus from the highly peroxidative action of estradiol-17β.  相似文献   
5.
6.
7.
Psychoactive drugs like chlorpromazine (CPZ), imipramine, lithium and amphetamine in one way or another affect behaviour. The drug responses are presumably mediated by inducing a change in the activity of membrane bound enzymes. CPZ is very potent in inhibiting the alkaline phosphatase activity in rat brain. The combined effect of CPZ with other drugs shows that CPZ and imipramine together inhibit the enzyme activity significantly greater than the individual inhibition either by CPZ or by imipramine alone. Effective inhibition of the alkaline phosphatase activity with a single drug or combined drugs may lead to a change in neuronal permeability through glucocorticoids thereby affecting mood.  相似文献   
8.
9.
Monoclonal antibodies against Escherichia coli ribosomal proteins L9 and L10 were obtained and their specificity confirmed by Western blot analysis of total ribosomal protein. This was particularly important for the L9 antibody, since the immunizing antigen mixture contained predominantly L11. Each antibody recognized both 70 S ribosomes and 50 S subunits. Affinity-purified antibodies were tested for their effect on in vitro assays of ribosome function. Anti-L10 and anti-L9 inhibited poly(U)-directed polyphenylalanine synthesis almost completely. The antibodies had no effect on subunit association or dissociation and neither antibody inhibited peptidyltransferase activity. Both antibodies inhibited the binding of the ternary complex that consisted of aminoacyl-tRNA, guanylyl beta, gamma-methylenediphosphonate, and elongation factor Tu, and the binding of elongation factor G to the ribosome. The intact antibodies were more potent inhibitors than the Fab fragments. In contrast to the previously established location of L10 at the base of the L7/L12 stalk near the factor-binding site, the site of anti-L9 binding to 50 S subunits was shown by immune electron microscopy to be on the L1 lateral protuberance opposite the L7/L12 stalk as viewed in the quasisymmetric projection. The inhibition of factor binding by both antibodies, although consistent with established properties of L10 in the ribosome, suggests a long range effect on subunit structure that is triggered by the binding of anti-L9.  相似文献   
10.
To evaluate the functional role of the N-linked oligosaccharides of major histocompatibility complex (MHC) class II molecules, affinity-purified murine IAs class II molecules were deglycosylated in the presence of asparagine amidase enzyme. The deglycosylated IAs molecules were characterized by 12% SDS-polyacrylamide gel analysis under reduced and native conditions and the complete enzymatic removal of all three N-linked sugar components from the alpha/beta heterodimer was confirmed by lectin-link Western blot analysis. Like the native IAs molecules, the deglycosylated IAs molecules were fully capable of binding an antigenic peptide from myelin basic protein MBP(89-101). The kinetics of dissociation of preformed complexes of IAs.MBP(89-101) and deglycosylated IAs.MBP(89-101) were compared at 4 and at 37 degrees C. Both complexes were equally stable at 4 degrees C; however, at 37 degrees C the deglycosylated IAs.MBP(89-101) complexes showed an increased rate of dissociation as compared with the native IAs.MBP(89-101) complexes. When tested for their ability to recognize the T cell receptor on T cells, both complexes bound to cloned HS-1 T cells that recognize and respond to IAs.MBP(89-101). Finally, the complexes of deglycosylated IAs.MBP(89-101) were tested for the induction of in vitro nonresponsiveness and compared with native IAs.MBP(89-101) complexes. Both complexes were capable of inducing 95-100% nonresponsiveness in a proliferation assay. These results suggest that the N-linked oligosaccharide of MHC class II molecules may not be essential for either antigenic peptide binding or T cell recognition. In addition results obtained here provide evidence that the carbohydrate moities of MHC class II molecules may not be involved in induction of T cell clonal anergy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号