首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   7篇
  240篇
  2024年   2篇
  2023年   1篇
  2022年   4篇
  2021年   3篇
  2020年   5篇
  2019年   10篇
  2018年   14篇
  2017年   8篇
  2016年   10篇
  2015年   7篇
  2014年   8篇
  2013年   19篇
  2012年   19篇
  2011年   22篇
  2010年   15篇
  2009年   7篇
  2008年   7篇
  2007年   7篇
  2006年   8篇
  2005年   2篇
  2004年   5篇
  2003年   7篇
  2002年   5篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   7篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有240条查询结果,搜索用时 0 毫秒
1.
2.
3.
    
The aim of this study is to reveal the molecular changes accompanying the neuronal hyper-excitability during lipopolysaccharide (LPS)-induced systemic inflammation on rat hippocampus using Fourier transform infrared (FTIR) spectroscopy. For this aim, the body temperature of Wistar albino rats administered LPS or saline was recorded by radiotelemetry. The animals were decapitated when their body temperature began to decrease by 0.5°C after LPS treatment and the hippocampi of them were examined by FTIR spectroscopy. The results indicated that systemic inflammation caused lipid peroxidation, an increase in the amounts of lipids, proteins and nucleic acids, a decrease in membrane order, an increase in membrane dynamics and changes in the secondary structure of proteins. Principal component analysis successfully separated control and LPS-treated groups. In conclusion, significant structural, compositional and functional alterations occur in the hippocampus during systemic inflammation and these changes may have specific characteristics which can lead to neuronal hyper-excitability.  相似文献   
4.
5.
Reduced endothelial nitric oxide synthase (eNOS) function has been linked to secondary complications of subarachnoid hemorrhage (SAH). We previously found that there is increased eNOS function after SAH but that it is uncoupled, leading to secondary complications such as vasospasm, microthromboembolism and neuronal apoptosis. Here we test the hypothesis that recoupling eNOS with simvastatin can prevent these complications. SAH was created in mice that were treated with vehicle or simvastatin starting 2 weeks before or 30 minutes after SAH. SAH increased phosphorylated eNOS which was prevented by pre- or post-treatment with simvastatin. Simvastatin pre-treatment also prevented the increase in eNOS monomer formation that was associated with SAH, decreased superoxide anion radical production and increased NO. These changes were associated with decreased vasospasm, microthromboemboli and neuronal injury. The data suggest that simvastatin re-couples eNOS after SAH, leading to decreased secondary complications such as vasospasm, microthromboemboli and neuronal injury.  相似文献   
6.
In combination with novel linear covalently closed (LCC) DNA minivectors, referred to as DNA ministrings, a gemini surfactant-based synthetic vector for gene delivery has been shown to exhibit enhanced delivery and bioavailability while offering a heightened safety profile. Due to topological differences from conventional circular covalently closed (CCC) plasmid DNA vectors, the linear topology of LCC DNA ministrings may present differences with regards to DNA interaction and the physicochemical properties influencing DNA-surfactant interactions in the formulation of lipoplexed particles. In this study, N,N-bis(dimethylhexadecyl)-α,ω-propanediammonium(16-3-16)gemini-based synthetic vectors, incorporating either CCC plasmid or LCC DNA ministrings, were characterized and compared with respect to particle size, zeta potential, DNA encapsulation, DNase sensitivity, and in vitro transgene delivery efficacy. Through comparative analysis, differences between CCC plasmid DNA and LCC DNA ministrings led to variations in the physical properties of the resulting lipoplexes after complexation with 16-3-16 gemini surfactants. Despite the size disparities between the plasmid DNA vectors (CCC) and DNA ministrings (LCC), differences in DNA topology resulted in the generation of lipoplexes of comparable particle sizes. The capacity for ministring (LCC) derived lipoplexes to undergo complete counterion release during lipoplex formation contributed to improved DNA encapsulation, protection from DNase degradation, and in vitro transgene delivery.  相似文献   
7.
Cathepsin G is a neutrophil-derived serine protease that contributes to tissue damage at sites of inflammation. The actions of cathepsin G are reported to be mediated by protease-activated receptor (PAR)-4 (a thrombin receptor) in human platelets. This study provides the first evidence that cathepsin G promotes inositol 1,4,5-trisphosphate accumulation, activates ERK, p38 MAPK, and AKT, and decreases contractile function in cardiomyocytes. Because some cathepsin G responses mimic cardiomyocyte activation by thrombin, a role for PARs was considered. Cathepsin G markedly activates phospholipase C and p38 MAPK in cardiomyocytes from PAR-1-/- mice, but it fails to activate phospholipase C, ERK, p38 MAPK, or AKT in PAR-1- or PAR-4-expressing PAR-1-/- fibroblasts (which display robust responses to thrombin). These results argue that PAR-1 does not mediate the actions of cathepsin G in cardiomyocytes, and neither PAR-1 nor PAR-4 mediates the actions of cathepsin G in fibroblasts. Of note, prolonged incubation of cardiomyocytes with cathepsin G results in the activation of caspase-3, cleavage of FAK and AKT, sarcomeric disassembly, cell rounding, cell detachment from underlying matrix, and morphologic features of apoptosis. Inhibition of Src family kinases or caspases (with PP1 or benzyloxycarbonyl-VAD-fluoromethyl ketone, respectively) delays FAK and AKT cleavage and cardiomyocyte detachment from substrate. Collectively, these studies describe novel cardiac actions of cathepsin G that do not require PARs and are predicted to assume functional importance at sites of interstitial inflammation in the heart.  相似文献   
8.
9.
Protein kinase C isoforms comprise a family of structurally related serine/threonine kinases that are activated by second messenger molecules formed via receptor-dependent activation of phospholipase C. Cardiomyocytes co-express multiple protein kinase C isoforms which play key roles in a spectrum of adaptive and maladaptive cardiac responses. This chapter focuses on the structural features, modes of activation, and distinct cellular actions of individual PKC isoforms in the heart. Particular emphasis is placed on progress that comes from studies in molecular models of PKC isoform overexpression or gene deletion in mice. Recent studies that distinguish the functional properties of novel PKC isoforms (PKC and PKC) from each other, and from the actions of the conventional PKC isoforms, and suggest that these proteins may play a particularly significant role in pathways leading to cardiac growth and/or cardioprotection also are considered.  相似文献   
10.
Aphidius ervi (Hymenoptera: Braconidae) is an entomophagous parasitoid known to be an effective parasitoid of several aphid species of economic importance. A reduction of its production cost during mass rearing for inundative release is needed to improve its use in biological control of pests. In these contexts, a careful analysis of its entire development phases within its host is needed. This paper shows that this parasitoid has some characteristics in its embryological development rather complex and different from most other reported insects, which can be phylogenetically very close. First, its yolkless egg allows a high fecundity of the female but force them to hatch from the egg shell rapidly to the host hemocoel. An early cellularisation allowing a rapid differentiation of a serosa membrane seems to confirm this hypothesis. The serosa wraps the developing embryo until the first instar larva stage and invades the host tissues by microvilli projections and form a placenta like structure able to divert host resources and allowing nutrition and respiration of embryo. Such interspecific invasion, at the cellular level, recalls mammal's trophoblasts that anchors maternal uterine wall and underlines the high adaptation of A. ervi to develop in the host body.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号