首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1940篇
  免费   147篇
  2087篇
  2023年   7篇
  2022年   20篇
  2021年   62篇
  2020年   31篇
  2019年   32篇
  2018年   40篇
  2017年   42篇
  2016年   60篇
  2015年   114篇
  2014年   144篇
  2013年   169篇
  2012年   176篇
  2011年   154篇
  2010年   101篇
  2009年   91篇
  2008年   111篇
  2007年   136篇
  2006年   113篇
  2005年   87篇
  2004年   81篇
  2003年   92篇
  2002年   73篇
  2001年   6篇
  2000年   11篇
  1999年   13篇
  1998年   18篇
  1997年   11篇
  1996年   12篇
  1995年   7篇
  1994年   5篇
  1993年   8篇
  1992年   4篇
  1991年   5篇
  1990年   7篇
  1989年   5篇
  1988年   2篇
  1987年   6篇
  1986年   4篇
  1985年   6篇
  1983年   2篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
  1974年   3篇
  1973年   2篇
  1953年   1篇
  1929年   1篇
  1927年   1篇
排序方式: 共有2087条查询结果,搜索用时 0 毫秒
1.
New World bats have recently been discovered to harbor influenza A virus (FLUAV)-related viruses, termed bat-associated influenza A-like viruses (batFLUAV). The internal proteins of batFLUAV are functional in mammalian cells. In contrast, no biological functionality could be demonstrated for the surface proteins, hemagglutinin (HA)-like (HAL) and neuraminidase (NA)-like (NAL), and these proteins need to be replaced by their human counterparts to allow spread of batFLUAV in human cells. Here, we employed rhabdoviral vectors to study the role of HAL and NAL in viral entry. Vectors pseudotyped with batFLUAV-HAL and -NAL were able to enter bat cells but not cells from other mammalian species. Host cell entry was mediated by HAL and was dependent on prior proteolytic activation of HAL and endosomal low pH. In contrast, sialic acids were dispensable for HAL-driven entry. Finally, the type II transmembrane serine protease TMPRSS2 was able to activate HAL for cell entry indicating that batFLUAV can utilize human proteases for HAL activation. Collectively, these results identify viral and cellular factors governing host cell entry driven by batFLUAV surface proteins. They suggest that the absence of a functional receptor precludes entry of batFLUAV into human cells while other prerequisites for entry, HAL activation and protonation, are met in target cells of human origin.  相似文献   
2.
The aim of the study reported in this article was to investigate staff nurses’ perceptions and experiences about structural empowerment and perceptions regarding the extent to which structural empowerment supports safe quality patient care. To address the complex needs of patients, staff nurse involvement in clinical and organizational decision-making processes within interdisciplinary care settings is crucial. A qualitative study was conducted using individual semi-structured interviews of 11 staff nurses assigned to medical or surgical units in a 600-bed university hospital in Belgium. During the study period, the hospital was going through an organizational transformation process to move from a classic hierarchical and departmental organizational structure to one that was flat and interdisciplinary. Staff nurses reported experiencing structural empowerment and they were willing to be involved in decision-making processes primarily about patient care within the context of their practice unit. However, participants were not always fully aware of the challenges and the effect of empowerment on their daily practice, the quality of care and patient safety. Ongoing hospital change initiatives supported staff nurses’ involvement in decision-making processes for certain matters but for some decisions, a classic hierarchical and departmental process still remained. Nurses perceived relatively high work demands and at times viewed empowerment as presenting additional. Staff nurses recognized the opportunities structural empowerment provided within their daily practice. Nurse managers and unit climate were seen as crucial for success while lack of time and perceived work demands were viewed as barriers to empowerment.  相似文献   
3.
4.
Summary This study investigates the nutritional requirements ofXenopus laevis neural crest cells and melanophores developing in vitro. A comparison is made between the growth and differentiation of cells in serum-containing medium and a chemically defined, serum-free medium that we have designed. Our chemically defined medium is more efficient than serum-supplemented medium in promoting proliferation of these cells. Several supplements are required to enhance culture development. These include insulin, α-melanocyte stimulating hormone, somatotropin, luteotrophic hormone, linoleic acid, uridine, and putrescine. In addition, collagen and fibronectin provide the most conductive environment tested for cell migration and adhesion. This work was supported by establishment and major equipment grants from the Alberta Heritage Foundation for Medical Research to N. C. M. Nadine C. Milos is a Heritage Medical Research Scholar of the Alberta Heritage Foundation for Medical Research.  相似文献   
5.
RNA-binding proteins (RBPs) have been relatively overlooked in cancer research despite their contribution to virtually every cancer hallmark. Here, we use RNA interactome capture (RIC) to characterize the melanoma RBPome and uncover novel RBPs involved in melanoma progression. Comparison of RIC profiles of a non-tumoral versus a metastatic cell line revealed prevalent changes in RNA-binding capacities that were not associated with changes in RBP levels. Extensive functional validation of a selected group of 24 RBPs using five different in vitro assays unveiled unanticipated roles of RBPs in melanoma malignancy. As proof-of-principle we focused on PDIA6, an ER-lumen chaperone that displayed a novel RNA-binding activity. We show that PDIA6 is involved in metastatic progression, map its RNA-binding domain, and find that RNA binding is required for PDIA6 tumorigenic properties. These results exemplify how RIC technologies can be harnessed to uncover novel vulnerabilities of cancer cells.  相似文献   
6.
The sense of taste plays an important role in the evaluation of the nutrient composition of consumed food. Bitter taste in particular is believed to serve a warning function against the ingestion of poisonous substances. In the past years enormous progress was made in the characterization of bitter taste receptors, including their gene expression patterns, pharmacological features and presumed physiological roles in gustatory as well as in non-gustatory tissues. However, due to a lack in TAS2R-specifc antibodies the localization of receptor proteins within gustatory tissues has never been analyzed. In the present study we have screened a panel of commercially available antisera raised against human bitter taste receptors by immunocytochemical experiments. One of these antisera was found to be highly specific for the human bitter taste receptor TAS2R38. We further demonstrate that this antibody is able to detect heterologously expressed TAS2R38 protein on Western blots. The antiserum is, however, not able to interfere significantly with TAS2R38 function in cell based calcium imaging analyses. Most importantly, we were able to demonstrate the presence of TAS2R38 protein in human gustatory papillae. Using double immunofluorescence we show that TAS2R38-positive cells form a subpopulation of PLCbeta2 expressing cells. On a subcellular level the localization of this bitter taste receptor is neither restricted to the cell surface nor particularly enriched at the level of the microvilli protruding into the pore region of the taste buds, but rather evenly distributed over the entire cell body.  相似文献   
7.
8.
Gene knockout in murine embryonic stem cells (ESCs) has been an invaluable tool to study gene function in vitro or to generate animal models with altered phenotypes. Gene targeting using standard techniques, however, is rather inefficient and typically does not exceed frequencies of 10(-6). In consequence, the usage of complex positive/negative selection strategies to isolate targeted clones has been necessary. Here, we present a rapid single-step approach to generate a gene knockout in mouse ESCs using engineered zinc-finger nucleases (ZFNs). Upon transient expression of ZFNs, the target gene is cleaved by the designer nucleases and then repaired by non-homologous end-joining, an error-prone DNA repair process that introduces insertions/deletions at the break site and therefore leads to functional null mutations. To explore and quantify the potential of ZFNs to generate a gene knockout in pluripotent stem cells, we generated a mouse ESC line containing an X-chromosomally integrated EGFP marker gene. Applying optimized conditions, the EGFP locus was disrupted in up to 8% of ESCs after transfection of the ZFN expression vectors, thus obviating the need of selection markers to identify targeted cells, which may impede or complicate downstream applications. Both activity and ZFN-associated cytotoxicity was dependent on vector dose and the architecture of the nuclease domain. Importantly, teratoma formation assays of selected ESC clones confirmed that ZFN-treated ESCs maintained pluripotency. In conclusion, the described ZFN-based approach represents a fast strategy for generating gene knockouts in ESCs in a selection-independent fashion that should be easily transferrable to other pluripotent stem cells.  相似文献   
9.
Procaspase-8, the zymogen form of the apoptosis-initiator caspase-8, undergoes phosphorylation following integrin-mediated cell attachment to an extracellular matrix substrate. Concordant with cell attachment to fibronectin, a population of procaspase-8 becomes associated with a peripheral insoluble compartment that includes focal complexes and lamellar microfilaments. Phosphorylation of procaspase-8 both impairs its maturation to the proapoptotic form and can promote cell migration. Here we show that the cytoskeletal adaptor protein CrkL promotes caspase-8 recruitment to the peripheral spreading edge of cells, and that the catalytic domain of caspase-8 directly interacts with the SH2 domain of CrkL. We show that the interaction is abolished by shRNA-mediated silencing of Src, in Src-deficient MEFs, and by pharmacologic inhibitors of the kinase. The results provide insight into how tyrosine kinases may act to coordinate the suppression caspase-8 mediated apoptosis, while promoting cell invasion.  相似文献   
10.
Biosynthesis of acetone and n-butanol is naturally restricted to the group of solventogenic clostridia with Clostridium acetobutylicum being the model organism for acetone-butanol-ethanol (ABE) fermentation. According to limited genetic tools, only a few rational metabolic engineering approaches were conducted in the past to improve the production of butanol, an advanced biofuel. In this study, a phosphotransbutyrylase-(Ptb) negative mutant, C. acetobutylicum ptb::int(87), was generated using the ClosTron methodology for targeted gene knock-out and resulted in a distinct butyrate-negative phenotype. The major end products of fermentation experiments without pH control were acetate (3.2?g/l), lactate (4.0?g/l), and butanol (3.4?g/l). The product pattern of the ptb mutant was altered to high ethanol (12.1?g/l) and butanol (8.0?g/l) titers in pH?≥?5.0-regulated fermentations. Glucose fed-batch cultivation elevated the ethanol concentration to 32.4?g/l, yielding a more than fourfold increased alcohol to acetone ratio as compared to the wildtype. Although butyrate was never detected in cultures of C. acetobutylicum ptb::int(87), the mutant was still capable to take up butyrate when externally added during the late exponential growth phase. These findings suggest that alternative pathways of butyrate re-assimilation exist in C. acetobutylicum, supposably mediated by acetoacetyl-CoA:acyl-CoA transferase and acetoacetate decarboxylase, as well as reverse reactions of butyrate kinase and Ptb with respect to previous studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号