首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4639篇
  免费   400篇
  5039篇
  2021年   51篇
  2020年   40篇
  2019年   49篇
  2018年   57篇
  2017年   48篇
  2016年   77篇
  2015年   130篇
  2014年   142篇
  2013年   168篇
  2012年   212篇
  2011年   205篇
  2010年   152篇
  2009年   111篇
  2008年   201篇
  2007年   203篇
  2006年   166篇
  2005年   177篇
  2004年   154篇
  2003年   137篇
  2002年   136篇
  2001年   127篇
  2000年   158篇
  1999年   120篇
  1998年   61篇
  1997年   58篇
  1996年   60篇
  1995年   50篇
  1994年   40篇
  1993年   45篇
  1992年   99篇
  1991年   98篇
  1990年   88篇
  1989年   76篇
  1988年   83篇
  1987年   85篇
  1986年   62篇
  1985年   69篇
  1984年   75篇
  1983年   54篇
  1982年   45篇
  1981年   47篇
  1980年   49篇
  1979年   79篇
  1978年   55篇
  1977年   36篇
  1976年   45篇
  1975年   36篇
  1974年   41篇
  1973年   42篇
  1969年   35篇
排序方式: 共有5039条查询结果,搜索用时 15 毫秒
1.
The crude soluble fraction of rat liver cytoplasm promotes the binding of acetylphenylalanyl-tRNA but not of Met-tRNAf to 40S subunits derived from 80S ribosomes. A protein has been extensively purified from the soluble fraction that catalyzes the template-dependent, GTP-independent binding of Met-tRNAf, acetylphenylalanyl-tRNA and phenylalanyl-tRNA but not Met-tRNAm. Purification involves fractionation with ammonium sulfate and chromatography on calcium phosphate gel, DEAE-Sephadex, carboxymethyl cellulose and Sephadex G-200. The optimum Mg2+ concentration for the binding reaction with Met-tRNAf is between 6 and 8 mm and the optimum temperature is between 10 and 15 °C. The complex formed as a result of the interaction between 40S subunits, acetylphenylalanyl-tRNA and poly(U) is functional; acetylpolyphenylalanine is synthesized when the isolated 40S-poly(U)·acetylphenylalanyl-tRNA complex is incubated with 60S subunits, phenylalanyl-tRNA, elongation factors and GTP.The crude cytoplasmic fraction, which does not stimulate the binding of Met-tRNAf, inhibits the purified factor-promoted binding of this substrate; the factor-independent, high magnesium ion-stimulated binding of Met-tRNAf to 40S subunits is also inhibited. The inhibitory activity can be resolved from the binding factor and is extensively purified by chromatography on calcium phosphate gel and carboxymethyl Sephadex and by electrofocusing. In the presence of 40S subunits, crude and purified preparations of the inhibitory activity hydrolyze Met-tRNAf but not Met-tRNAm or acetylphenylalanyl-tRNA. Free Met-tRNAf is not hydrolyzed. Incubation of hydrolase-containing preparations with the preformed 40S-·Met-tRNAf complex results in the rapid and extensive breakdown of the complex with release of acid-insoluble methionine; the formation of an 80S·substrate complex, by the addition of 60S subunits, protects particle-bound Met-tRNAf.  相似文献   
2.

Background

Cystic Fibrosis (CF) lung disease is characterized by liquid hyperabsorption, airway surface dehydration, and impaired mucociliary clearance (MCC). Herein, we present a compartment-based mathematical model of the airway that extends the resolution of functional imaging data.

Methods

Using functional imaging data to inform our model, we developed a system of mechanism-motivated ordinary differential equations to describe the mucociliary clearance and absorption of aerosolized radiolabeled particle and small molecules probes from human subjects with and without CF. We also utilized a novel imaging metric in vitro to gauge the fraction of airway epithelial cells that have functional ciliary activity.

Results

This model, and its incorporated kinetic rate parameters, captures the MCC and liquid dynamics of the hyperabsorptive state in CF airways and the mitigation of that state by hypertonic saline treatment.

Conclusions

We postulate, based on the model structure and its ability to capture clinical patient data, that patients with CF have regions of airway with diminished MCC function that can be recruited with hypertonic saline treatment. In so doing, this model structure not only makes a case for durable osmotic agents used in lung-region specific treatments, but also may provide a possible clinical endpoint, the fraction of functional ciliated airway.  相似文献   
3.
Unequivocal evidence for pluripotency in which embryonic stem cells contribute to chimeric offspring has yet to be demonstrated in human or nonhuman primates (NHPs). Here, rhesus and baboons ESCs were investigated in interspecific mouse chimera generated by aggregation or blastocyst injection. Aggregation chimera produced mouse blastocysts with GFP-nhpESCs at the inner cell mass (ICM), and embryo transfers (ETs) generated dimly-fluorescencing abnormal fetuses. Direct injection of GFP-nhpESCs into blastocysts produced normal non-GFP-fluorescencing fetuses. Injected chimera showed >70% loss of GFP-nhpESCs after 21 h culture. Outgrowths of all chimeric blastocysts established distinct but separate mouse- and NHP-ESC colonies. Extensive endogenous autofluorescence compromised anti-GFP detection and PCR analysis did not detect nhpESCs in fetuses. NhpESCs localize to the ICM in chimera and generate pregnancies. Because primate ESCs do not engraft post-implantation, and also because endogenous autofluorescence results in misleading positive signals, interspecific chimera assays for pluripotency with primate stem cells is unreliable with the currently available ESCs. Testing primate ESCs reprogrammed into even more na?ve states in these inter-specific chimera assays will be an important future endeavor.  相似文献   
4.
5.
pH-dependent denaturation of thrombin-activated porcine factor VIII   总被引:6,自引:0,他引:6  
Thrombin-activated porcine factor VIII (fVIIIaIIa) is a stable, active, 160-kDa heterotrimer at concentrations exceeding 2 x 10(-7) M in 0.7 M NaCl, 0.01 M histidine Cl, 5 mM CaCl2, pH 6.0, at 4 degrees C or 20 degrees C. Two of the subunits, fVIIIA1 and fVIIIA2, are derived from the heavy chain of the plasma-derived, heterodimeric fVIII precursor. The third subunit, fVIIIA3-C1-C2, is derived from the fVIII light chain. We now find that fVIIIaIIa undergoes a sharp decline in coagulant activity between pH 7 and 8. At pH 7.5, the activity of fVIIIaIIa at 3 x 10(-7) M decays within a few hours to a stable level that is approximately 70% of the value at pH 6.0, whereas at pH 8.0, greater than 99% of the activity is lost. The activity cannot be restored by readjusting the pH to 6.0. The loss of activity at pH 8.0 coincides with dissociation of the fVIIIA2 subunit since an inactive fVIIIA1/A3-C1-C2 heterodimer can be isolated by Mono S high performance liquid chromatography. After prolonged incubation at pH 8.0, the fVIIIA1 subunit also dissociates. The free fVIIIA2 fragment appears to be poorly soluble which may explain the irreversible loss of activity. Analytical velocity sedimentation of the pH-inactivated fVIIIaIIa preparation also is consistent with dissociation and precipitation of the fVIIIA2 fragment. We propose that denaturation of fVIIIaIIa by pH-dependent subunit dissociation may provide a major mechanism of inactivation of fVIIIaIIa under physiologic conditions.  相似文献   
6.
Helical regions in many tetrapyrrole proteins are highly amphiphilic, one side interacting with a hydrophobic core and another side interacting with the polar solvent. The mean helical hydrophobic moment is a measure of amphiphilicity of a helix. Helical regions in myoglobin, the alpha and beta subunits of C-phycocyanin, and cytochrome c can be distinguished from nonhelical regions by use of a hydrophobic moment analysis. 24 of 27 (89%) of the helical regions in these proteins were located by this analysis. Calculations were also performed on chymotrypsin, ribonuclease, and papain, which do not possess as pronounced a hydrophobic core as the tetrapyrrole-containing proteins. Less than 50% of the helical regions were correctly located, indicating a lack of amphiphilicity in the helices of these proteins. The hydrophobic moment analysis was also used to predict helical regions in phytochrome, the ubiquitous photoreceptor in plants. Additionally, this analysis is used to quickly locate internal hydrophilic residues which may be functionally important. The distribution of hydrophobic moments from a random sequence was determined so that qualitative and to some extent quantitative comparisons between different amphiphilic helices may be made.  相似文献   
7.
Protein ubiquitination plays an important role in the regulation of almost every aspect of eukaryotic cellular function; therefore, its destabilization is often observed in most human diseases and cancers. Consequently, developing inhibitors of the ubiquitination system for the treatment of cancer has been a recent area of interest. Currently, only a few classes of compounds have been discovered to inhibit the ubiquitin-activating enzyme (E1) and only one class is relatively selective in E1 inhibition in cells. We now report that Largazole and its ester and ketone analogs selectively inhibit ubiquitin conjugation to p27(Kip1) and TRF1 in vitro. The inhibitory activity of these small molecules on ubiquitin conjugation has been traced to their inhibition of the ubiquitin E1 enzyme. To further dissect the mechanism of E1 inhibition, we analyzed the effects of these inhibitors on each of the two steps of E1 activation. We show that Largazole and its derivatives specifically inhibit the adenylation step of the E1 reaction while having no effect on thioester bond formation between ubiquitin and E1. E1 inhibition appears to be specific to human E1 as Largazole ketone fails to inhibit the activation of Uba1p, a homolog of E1 in Schizosaccharomyces pombe. Moreover, Largazole analogs do not significantly inhibit SUMO E1. Thus, Largazole and select analogs are a novel class of ubiquitin E1 inhibitors and valuable tools for studying ubiquitination in vitro. This class of compounds could be further developed and potentially be a useful tool in cells.  相似文献   
8.
Domestic dogs exhibit tremendous phenotypic diversity, including a greater variation in body size than any other terrestrial mammal. Here, we generate a high density map of canine genetic variation by genotyping 915 dogs from 80 domestic dog breeds, 83 wild canids, and 10 outbred African shelter dogs across 60,968 single-nucleotide polymorphisms (SNPs). Coupling this genomic resource with external measurements from breed standards and individuals as well as skeletal measurements from museum specimens, we identify 51 regions of the dog genome associated with phenotypic variation among breeds in 57 traits. The complex traits include average breed body size and external body dimensions and cranial, dental, and long bone shape and size with and without allometric scaling. In contrast to the results from association mapping of quantitative traits in humans and domesticated plants, we find that across dog breeds, a small number of quantitative trait loci (≤3) explain the majority of phenotypic variation for most of the traits we studied. In addition, many genomic regions show signatures of recent selection, with most of the highly differentiated regions being associated with breed-defining traits such as body size, coat characteristics, and ear floppiness. Our results demonstrate the efficacy of mapping multiple traits in the domestic dog using a database of genotyped individuals and highlight the important role human-directed selection has played in altering the genetic architecture of key traits in this important species.  相似文献   
9.
It has long been assumed that Al3+ is an important rhizotoxic ion in acid soils around the world, but the toxicity of Al3+ relative to mononuclear hydroxy-Al [AlOH2+ and Al(OH)+2] has been examined in detail only for an Al-sensitive wheat variety ( Triticum aestivum L. cv. Tyler). That plant appears to be sensitive to Al3+ but not to AlOH2+ and Al(OH)+2. New experiments, and reanalyses of previously published experiments, provide evidence that dicotyledonous species may be sensitive to mononuclear hydroxy-Al and that Al3+ may be nontoxic, or less toxic, to those plants. Despite these consistently measured differences between wheat and the dicotyledons, the determination of relative toxicities (Al3+ vs mononuclear hydroxy-Al) may be an intractable problem. Because of hydrolysis equilibria, (AlOH2+) and (Al(OH)+2) are equivalent to (Al3+)k1(H+)−1 and (l3+)k2(H+)−2, respectively, in which k1 and k2 are the first and second hydrolysis constants (braces denote activities). Thus, any expression of root elongation as a function of mononuclear hydroxy-Al can be alternatively expressed as a function of (Al3+) and (H+). Toxicity attributed to mononuclear hydroxy-Al may actually be Al3+ toxicity that increases as pH rises (i.e. Al3+ toxicity ameliorated by H+).  相似文献   
10.
Great Lakes coastal wetlands provide important spawning and nursery habitat as well as abundant food resources for yellow perch (Perca flavescens). We examined multiple years of fyke-net data from wetlands along Lakes Huron and Michigan to describe yellow perch distribution in drowned river mouth (DRM) and coastal fringing systems. Principal components analysis and multi-response permutation procedures indicated that DRM wetlands (yellow perch CPUE = 0.2) were eutrophic systems that often exhibit high temperatures and periods of hypoxia, whereas coastal fringing wetlands (yellow perch CPUE = 32.1) were less productive. Among the coastal fringing systems, Saginaw Bay (Lake Huron), displayed characteristics of being more productive and had more yellow perch. Most yellow perch captured in Saginaw Bay were age-0, suggesting that it was an important nursery habitat. Among DRM ecosystems, we found that the downstream lake macrohabitats contained more yellow perch than upstream wetlands; however, there was no significant difference in abiotic characteristics to explain the higher catches in lakes. We hypothesize that yellow perch were more prevalent in wetlands with intermediate productivity during summer because these systems provide abundant food resources without the harsh conditions associated with highly eutrophic wetlands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号