全文获取类型
收费全文 | 144篇 |
免费 | 7篇 |
国内免费 | 1篇 |
专业分类
152篇 |
出版年
2016年 | 2篇 |
2015年 | 4篇 |
2014年 | 3篇 |
2013年 | 4篇 |
2011年 | 2篇 |
2010年 | 3篇 |
2009年 | 6篇 |
2008年 | 4篇 |
2007年 | 5篇 |
2006年 | 2篇 |
2005年 | 9篇 |
2004年 | 3篇 |
2003年 | 4篇 |
1999年 | 2篇 |
1998年 | 2篇 |
1997年 | 2篇 |
1995年 | 2篇 |
1994年 | 4篇 |
1993年 | 2篇 |
1992年 | 3篇 |
1988年 | 2篇 |
1987年 | 3篇 |
1986年 | 2篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 3篇 |
1979年 | 3篇 |
1978年 | 2篇 |
1977年 | 3篇 |
1976年 | 2篇 |
1974年 | 2篇 |
1973年 | 1篇 |
1971年 | 2篇 |
1970年 | 1篇 |
1969年 | 1篇 |
1968年 | 1篇 |
1966年 | 2篇 |
1964年 | 1篇 |
1962年 | 1篇 |
1959年 | 2篇 |
1958年 | 4篇 |
1957年 | 5篇 |
1956年 | 6篇 |
1955年 | 5篇 |
1954年 | 4篇 |
1953年 | 5篇 |
1952年 | 4篇 |
1951年 | 1篇 |
1949年 | 1篇 |
1948年 | 2篇 |
排序方式: 共有152条查询结果,搜索用时 0 毫秒
1.
ANNA M. MIKA ROSS M. WEISS† OWEN OLFERT† REBECCA H. HALLETT JONATHAN A. NEWMAN 《Global Change Biology》2008,14(8):1721-1733
Climate change may dramatically affect the distribution and abundance of organisms. With the world's population size expected to increase significantly during the next 100 years, we need to know how climate change might impact our food production systems. In particular, we need estimates of how future climate might alter the distribution of agricultural pests. We used the climate projections from two general circulation models (GCMs) of global climate, the Canadian Centre for Climate Modelling and Analysis GCM (CGCM2) and the Hadley Centre model (HadCM3), for the A2 and B2 scenarios from the Special Report on Emissions Scenarios in conjunction with a previously published bioclimatic envelope model (BEM) to predict the potential changes in distribution and abundance of the swede midge, Contarinia nasturtii, in North America. The BEM in conjunction with either GCM predicted that C. nasturtii would spread from its current initial invasion in southern Ontario and northwestern New York State into the Canadian prairies, northern Canada, and midwestern United States, but the magnitude of risk depended strongly on the GCM and the scenario used. When the CGCM2 projections were used, the BEM predicted an extensive shift in the location of the midges' climatic envelope through most of Ontario, Quebec, and the maritime and prairie provinces by the 2080s. In the United States, C. nasturtii was predicted to spread to all the Great Lake states, into midwestern states as far south as Colorado, and west into Washington State. When the HadCM3 was applied, southern Ontario, Saskatchewan, and Washington State were not as favourable for C. nasturtii by the 2080s. Indeed, when used with the HadCM3 climate projections, the BEM predicted the virtual disappearance of ‘very favourable’ regions for C. nasturtii. The CGCM2 projections generally caused the BEM to predict a small increase in the mean number of midge generations throughout the course of the century, whereas, the HadCM3 projections resulted in roughly the same mean number of generations but decreased variance. Predictions of the likely potential of C. nasturtii spatial spread are thus strongly dependent on the source of climate projections. This study illustrates the importance of using multiple GCMs in combination with multiple scenarios when studying the potential for spatial spread of an organism in response to climate change. 相似文献
2.
Little is known about the effect of exercise training on the expression of adiponectin receptor genes in peripheral blood mononuclear cells (PBMCs). In this study, we investigated the effects of aerobic training on the expression of AdipoR1 and AidpoR2 mRNAs in PBMCs, whole body insulin sensitivity, and circulating adiponectins in men. Thirty young men were randomly assigned to either a control (n=15) or an exercise (n=15) group. Subjects assigned to the exercise group underwent a 12-week jogging and/or running programme on a motor-driven treadmill at an intensity of 60%-75% of the age-based maximum heart rate with duration of 40 minutes per session and a frequency of 5 days per week. Two-way mixed ANOVA with repeated measures was used to test any significant time-by-group interaction effects for the measured variables at p=0.05. We found significant time-by-group interaction effects for waist circumference (p=0.001), VO2max (p<0.001), fasting insulin (p=0.016), homeostasis model assessment for insulin resistance (HOMA-IR) (p=0.010), area under the curve (AUC) for insulin response during the 75-g oral glucose tolerance test (p=0.002), high-molecular weight (HMW) adiponectin (p=0.016), and the PBMC mRNA levels of AdipoR1 (p<0.001) and AdipoR2 (p=0.001). The exercise group had significantly increased mRNA levels of AdipoR1 and AdipoR2 in PBMCs, along with increased whole body insulin sensitivity and HMW adiponectin, decreased waist circumference, and increased VO2max compared with the control group. In summary, the current findings suggest that exercise training modulates the expression of AdipoR1 and AdipoR2 mRNAs in PBMCs, implying that manipulation of the expression of these genes could be a potential surrogate for lifestyle intervention-mediated improvements of whole body insulin sensitivity and glucose homeostasis. 相似文献
3.
4.
Plant species that can be linked by VA mycorrhizal fungi 总被引:6,自引:2,他引:6
5.
6.
During deposition of late Archean–early Palaeoproterozoic Precambrian banded iron formations (BIFs) the downward flux of ferric hydroxide (Fe(OH)3) and phytoplankton biomass should have facilitated microbial Fe(III) reduction. However, quantifying the significance of such a metabolic pathway in the Precambrian is extremely difficult, considering the post‐depositional alteration of the rocks and the lack of ideal modern analogues. Consequently, we have very few constraints on the Fe cycle at that time, namely (i) the concentration of dissolved Fe(II) in the ocean waters; (ii) by what mechanisms Fe(II) was oxidized (chemical, photochemical or biological, the latter using either O2 or light); (iii) where the ferric hydroxide was precipitated (over the shelf vs. open ocean); (iv) the amount of phytoplankton biomass, which relates to the nutrient status of the surface waters; (v) the relative importance of Fe(III) reduction vs. the other types of metabolic pathways utilized by sea floor microbial communities; and (vi) the proportion of primary vs. diagenetic Fe(II) in BIF. Furthermore, although estimates can be made regarding the quantity of reducing equivalents necessary to account for the diagenetic Fe(II) component in Fe‐rich BIF layers, those same estimates do not offer any insights into the magnitude of Fe(III) actually generated within the water column, and hence, the efficiency of Fe and C recycling prior to burial. Accordingly, in this study, we have attempted to model the ancient Fe cycle, based simply on conservative experimental rates of photosynthetic Fe(II) oxidation in the euphotic zone. We estimate here that under ideal growth conditions, as much as 70% of the biologically formed Fe(III) could have been recycled back into the water column via fermentation and organic carbon oxidation coupled to microbial Fe(III) reduction. By comparing the potential amount of biomass generated phototrophically with the reducing equivalents required for Fe(III) reduction and magnetite formation, we also hypothesize that another anaerobic metabolic pathway might have been utilized in the surface sediment to oxidize the fermentation by‐products. Based on the premise that the deep ocean waters were anoxic, this role could have been fulfilled by methanogens, and maybe even methanotrophs that employed Fe(III) reduction. 相似文献
7.
JONATHAN A. NEWMAN 《Global Change Biology》2006,12(9):1634-1642
Climate change will alter the abundance and distribution of species. Predicting these shifts is a challenge for ecologists and essential information for the formation of public policy. Here, I use a mechanistic mathematical model of the interaction between grass growth physiology and aphid population dynamics, coupled with the climate change projections from the UK's Hadley Centre HadCM3 global circulation model (GCM) and Canada's Center for Climate Modeling and Analysis CGCM2 GCM to predict the changes in the abundance and distribution of summer cereal aphid populations in wheat-growing regions of Canada. When used with the HadCM3 projections, the model predicts a latitudinal shift northward in abundances but there is longitudinal variation as well. However, when used with the CGCM2 projections the model predicts that continental regions will see a decline while coastal regions will see an increase in summer cereal aphid populations. These effects are stronger under the higher emissions scenarios. 相似文献
8.
9.
10.
Requirement for carbonic anhydrase activity in processes other than photosynthetic Inorganic carbon assimilation 总被引:5,自引:0,他引:5
A number of non-green plant tissues have high rates of HCO3−-consuming reactions in the cytosol, i.e. C4 dicarboxylic acid production preceding organic acid anion transport into dicarboxylate consuming compartments in N2-fixing root nodules, in lipogenic tissues, and in thermogenic aroid spadices and, in the case of lipogenic tissues, in acetyl CoA incorporation into lipid in plastid stroma. Since inorganic C supply to the cytosol or stroma by decarboxylation reactions, and by transmembrane fluxes, involves only CO2, the HCO3− consumed in the rapid metabolic processes must originate from hydration (hydroxylation) of CO2. Computations based on the first-order rate constant for uncatalysed conversion of CO2 to HCO3− and the most likely in vivo CO2 concentration show that the uncatalysed reaction is possibly adequate to supply the observed HCO3− requirement in the HCO3−-consuming compartments. However, carbonic anhydrase activity is well established in legume root nodules, and also appears to occur in aroid spadices. In addition to coping with any heterogeneities in HCO3−, consumption in the cytosol, the root nodule activity may be involved in optimizing haemoglobin function. Further work is needed on carbonic anhydrase expression is tissues with rapid HCO3− consumption, especially in view of reports of negligible carbonic anhydrase activity in some non-green plant tissues. Other possible roles of carbonic anhydrase in non-green plant tissues are briefly discussed. 相似文献