首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   3篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2010年   6篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  1990年   1篇
  1985年   1篇
  1969年   1篇
  1959年   2篇
  1953年   1篇
  1950年   2篇
  1949年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
The therevoid clade represents a group of four families (Apsilocephalidae, Evocoidae, Scenopinidae and Therevidae) of lower brachyceran Diptera in the superfamily Asiloidea. The largest of these families is that of the stiletto flies (Therevidae). A large‐scale (i.e. supermatrix) phylogeny of Therevidae is presented based on DNA sequence data from seven genetic loci (16S, 18S and 28S ribosomal DNA and four protein‐encoding genes: elongation factor 1‐alpha, triose phosphate isomerase, short‐wavelength rhodopsin and the CPSase region of carbamoyl‐phosphate synthase‐aspartate transcarbamoylase‐dihydroorotase). Results are presented from Bayesian phylogenetic analyses of approximately 8.7 kb of sequence data for 204 taxa representing all subfamilies and genus groups of Therevidae. Our results strongly support the sister‐group relationship between Therevidae and Scenopinidae, with Apsilocephalidae as sister to Evocoidae. Previous estimates of stiletto fly phylogeny based on morphology or DNA sequence data, or supertree analysis, have failed to find significant support for relationships among subfamilies. We report for the first time strong support for the placement of the subfamily Phycinae as sister to the remaining Therevidae, originating during the Mid Cretaceous. As in previous studies, the sister‐group relationship between the species‐rich subfamilies Agapophytinae and Therevinae is strongly supported. Agapophytinae are recovered as monophyletic, inclusive of the Taenogera group. Therevinae comprise the bulk of the species richness in the family and appear to be a relatively recent and rapid radiation originating in the southern hemisphere (Australia + Antarctica + South America) during the Late Cretaceous. Genus groups are defined for all subfamilies based on these results.  相似文献   
5.
We present field observations of carbon isotope discrimination (Δ) and internal conductance of CO2 ( g i) collected using tunable diode laser spectroscopy (TDL). Δ ranged from 12.0 to 27.4‰ over diurnal periods with daily means from 16.3 ± 0.2‰ during drought to 19.0 ± 0.5‰ during monsoon conditions. We observed a large range in g i, with most estimates between 0.04 and 4.0  µ mol m−2 s−1 Pa−1. We tested the comprehensive Farquhar, O'Leary and Berry model of Δ (Δcomp), a simplified form of Δcompsimple) and a recently suggested amendment (Δrevised). Sensitivity analyses demonstrated that varying g i had a substantial effect on Δcomp, resulting in mean differences between observed Δ (Δobs) and Δcomp ranging from 0.04 to 9.6‰. First-order regressions adequately described the relationship between Δ and the ratio of substomatal to atmospheric CO2 partial pressure ( p i/ p a) on all 3 d, but second-order models better described the relationship in July and August. The three tested models each best predicted Δobs on different days. In June, Δsimple outperformed Δcomp and Δrevised, but incorporating g i and all non-photosynthetic fractionations improved model predictions in July and August.  相似文献   
6.
Despite decades of research on plant drought tolerance, the physiological mechanisms by which trees succumb to drought are still under debate. We report results from an experiment designed to separate and test the current leading hypotheses of tree mortality. We show that piñon pine (Pinus edulis) trees can die of both hydraulic failure and carbon starvation, and that during drought, the loss of conductivity and carbohydrate reserves can also co‐occur. Hydraulic constraints on plant carbohydrate use determined survival time: turgor loss in the phloem limited access to carbohydrate reserves, but hydraulic control of respiration prolonged survival. Our data also demonstrate that hydraulic failure may be associated with loss of adequate tissue carbohydrate content required for osmoregulation, which then promotes failure to maintain hydraulic integrity.  相似文献   
7.
Leaf gas‐exchange regulation plays a central role in the ability of trees to survive drought, but forecasting the future response of gas exchange to prolonged drought is hampered by our lack of knowledge regarding potential acclimation. To investigate whether leaf gas‐exchange rates and sensitivity to drought acclimate to precipitation regimes, we measured the seasonal variations of leaf gas exchange in a mature piñon–juniper Pinus edulisJuniperus monosperma woodland after 3 years of precipitation manipulation. We compared trees receiving ambient precipitation with those in an irrigated treatment (+30% of ambient precipitation) and a partial rainfall exclusion (?45%). Treatments significantly affected leaf water potential, stomatal conductance and photosynthesis for both isohydric piñon and anisohydric juniper. Leaf gas exchange acclimated to the precipitation regimes in both species. Maximum gas‐exchange rates under well‐watered conditions, leaf‐specific hydraulic conductance and leaf water potential at zero photosynthetic assimilation all decreased with decreasing precipitation. Despite their distinct drought resistance and stomatal regulation strategies, both species experienced hydraulic limitation on leaf gas exchange when precipitation decreased, leading to an intraspecific trade‐off between maximum photosynthetic assimilation and resistance of photosynthesis to drought. This response will be most detrimental to the carbon balance of piñon under predicted increases in aridity in the southwestern USA.  相似文献   
8.
Rapana venosa is a predatory marine gastropod native to the coastal waters of China, Korea, and Japan. Since the 1940s, R. venosa has been transported around the globe and introduced populations now exist in the Black Sea, the Mediterranean Sea, the Adriatic and Aegean seas, off the coasts of France and the Netherlands, in Chesapeake Bay, Virginia, USA, and in the Rio de la Plata between Uruguay and Argentina. This study surveyed variation in two mitochondrial gene regions to investigate the invasion pathways of R. venosa, identify likely sources for introduced populations, and evaluate current hypotheses of potential transportation vectors. Sequence data were obtained for the mitochondrial cytochrome c oxidase I and NADH dehydrogenase subunit 2 gene regions of 178 individuals from eight native locations and 106 individuals from 12 introduced locations. Collections from within the native range displayed very high levels of genetic variation while collections from all introduced populations showed a complete lack of genetic diversity; a single haplotype was common to all introduced individuals. This finding is consistent with the hypothesis that R. venosa was initially introduced into the Black Sea, and this Black Sea population then served as a source for the other secondary invasions by various introduction vectors including ballast water transport. Although non‐native R. venosa populations currently appear to be thriving in their new environments, the lack of genetic variability raises questions regarding the evolutionary persistence of these populations.  相似文献   
9.
Drought‐ and insect‐associated tree mortality at low‐elevation ecotones is a widespread phenomenon but the underlying mechanisms are uncertain. Enhanced growth sensitivity to climate is widely observed among trees that die, indicating that a predisposing physiological mechanism(s) underlies tree mortality. We tested three, linked hypotheses regarding mortality using a ponderosa pine (Pinus ponderosa) elevation transect that experienced low‐elevation mortality following prolonged drought. The hypotheses were: (1) mortality was associated with greater growth sensitivity to climate, (2) mortality was associated with greater sensitivity of gas exchange to climate, and (3) growth and gas exchange were correlated. Support for all three hypotheses would indicate that mortality results at least in part from gas exchange constraints. We assessed growth using basal area increment normalized by tree basal area [basal area increment (BAI)/basal area (BA)] to account for differences in tree size. Whole‐crown gas exchange was indexed via estimates of the CO2 partial pressure difference between leaf and atmosphere (pa?pc) derived from tree ring carbon isotope ratios (δ13C), corrected for temporal trends in atmospheric CO2 and δ13C and elevation trends in pressure. Trees that survived the drought exhibited strong correlations among and between BAI, BAI/BA, pa?pc, and climate. In contrast, trees that died exhibited greater growth sensitivity to climate than trees that survived, no sensitivity of pa?pc to climate, and a steep relationship between pa?pc and BAI/BA. The pa?pc results are consistent with predictions from a theoretical hydraulic model, suggesting trees that died had a limited buffer between mean water availability during their lifespan and water availability during drought – i.e., chronic water stress. It appears that chronic water stress predisposed low‐elevation trees to mortality during drought via constrained gas exchange. Continued intensification of drought in mid‐latitude regions may drive increased mortality and ecotone shifts in temperate forests and woodlands.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号