首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  8篇
  2018年   1篇
  2012年   1篇
  2011年   1篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1986年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The phyllosphere microbial populations inhabiting the needles of three conifer species, Scots pine (Pinus sylvestris L.), Sitka spruce (Picea sitchensis L.) and Norway spruce (Picea abies (L.) Karst.), exposed to SO2 and O3, in an open-air fumigation experiment were analysed over a 3 year period using serial dilution after washing, direct plating and a fluorescein diacetate (FDA) enzyme assay. Total fungal populations ranged from 102 to 105 colonyforming units (CPU) g?1 fresh weight of needles. The dominant fungi isolated from needles varied with tree species and isolation technique; Aureobasidium pullulans (de Bary) Arnaud was most common on Scots pine and Norway spruce and white yeasts on Sitka spruce using the dilution plating method. However, direct plating of needle segments onto culture media indicated that Sclerophoma pythiophila (Corda) Hohnel was dominant on Scots pine and A. pullulans on Sitka and Norway spruce. Green needles of Sitka spruce were found to be endophytically colonized by Rhizosphaera kalkhoffii Bubak, but seldom by Lophodermium piceae (Fuckel) Hohn during extensive sampling in 1990. Statistical analyses revealed significant differences (P<0.05) between plots in the 3 year mean of the total fungal populations or the fungal biomass (FDA assay) on all three tree species. Differences between plots were also observed for a number of dominant component species. Data were also analysed for treatment effects. A significant effect of SO2 treatment was observed on the total fungal populations on Sitka spruce (P<0.05) which were reduced markedly by the low-SO2 treatment, while the O3 treatment caused a significant increase in total fungal numbers on Scots pine (P<0.05). The FDA activity on needles of both Scots pine and Sitka spruce was noticeably higher in the 03-only treatment plot, but the overall O3 effect was not significant. Treatment effects were also detected on the occurrence of component species. The serial dilution method revealed an SO2 effect (P<0.05) of a reduction in the occurrence of pink yeasts on Sitka spruce and an O3 effect (P<0.05) of an increase in the occurrence of S. pythiophila on Sitka spruce (P<0.01) but a decrease of Epicoccum nigrum Link and Cladosporium spp. on Scots pine. The direct-plating method revealed an SO2 effect of an increase in S. pythiophila on Norway spruce (P<0.05). Ozone treatment caused a significant increase in the isolation of a black strain of A. pullulans on Norway spruce (P<0.05). Endophytic colonization of Sitka spruce needles by R. kalkhoffii was found to be increased on two occasions by O3 exposure.  相似文献   
2.
The microbial population dynamics on apples cv. Golden Delicious were analysed every 15 days between bud and harvest in a fully replicated experiment in northern Spain in 1994 and 1995. The total microbial populations varied with developmental stage, and with prevailing climatic conditions. The predominant mycroflora were the filamentous fungi Cladosporium and Alternaria spp. and white and pink yeasts. Other genera isolated included mainly species of Epicoccum, Fusarium and Acremonium. However, the most important post-harvest pathogens Penicillium expansum and Botrytis cinerea were seldom isolated from ripening apples. Maximum total filamentous fungal populations occurred after fruit set and during early ripening [2 × 104cfu (colony-forming units) g-1 approximately] while those of bacteria were maximum at bud stage (3.5 × 105and 3.0 × 104 cfu g-1 in 1994 and 1995 respectively). White yeasts were more numerous than pink yeasts. Endophytic infection of apple buds by Alternaria spp., responsible for core rot, was found in almost all bud tissue. By contrast, Cladosporium spp. were initially isolated later from 12.5–50% of tissue samples during blooming and fruit set. The impact of a four-spray fungicide regime during apple development significantly decreased the total filamentous fungal populations in both years, and that of Cladosporium spp. in 1994. However, bacterial populations were often higher on apples from fungicide-treated plots. Fungicide sprays decreased populations of Cladosporium, Alternaria and white yeasts for a maximum of up to 15–30 days after application. Fungicide application had little effect on endophytic infection of apples by Alternaria spp. between bud and harvest.  相似文献   
3.
The impact of elevated carbon dioxide (CO2, 600/700 μmol mol-1) and temperature (+ 4°C) on phyllosphere fungi colonising flag leaves of mini crops of winter wheat cv. Mercia between anthesis and harvest was determined in a computer-controlled environment facility in 1993 and 1994. In both years the total fungal populations (cm2 leaf) were found to have increased due to exposure to either elevated CO2 and elevated CO2+ temperature treatments. This was mainly due to significant increases in populations of Cladosporium spp. (C. cladosporioides and C. herbarum) on the flag leaves during ripening. Other phyllosphere component species such as white and pink yeasts were not markedly affected by treatments. The range of fungal species found in such controlled environment chambers was narrower than that commonly found on flag leaves of field grown crops. Common and important colonisers of leaves and ripening ears such as Aureobasidium pullulans, Epicoccum nigrum and Fusarium spp. were seldom isolated.  相似文献   
4.
Lentil (Lens culinaris ssp. culinaris), is a self-pollinating diploid (2n?=?2x?=?14), cool-season legume crop and is consumed worldwide as a rich source of protein (~24.0%), largely in vegetarian diets. Here we report development of a genetic linkage map of Lens using 114 F2 plants derived from the intersubspecific cross between L 830 and ILWL 77. RAPD (random amplified polymorphic DNA) primers revealed more polymorphism than ISSR (intersimple sequence repeat) and SSR (simple sequence repeat) markers. The highest proportion (30.72%) of segregation distortion was observed in RAPD markers. Of the 235 markers (34 SSR, 9 ISSR and 192 RAPD) used in the mapping study, 199 (28 SSRs, 9 ISSRs and 162 RAPDs) were mapped into 11 linkage groups (LGs), varying between 17.3 and 433.8 cM and covering 3843.4 cM, with an average marker spacing of 19.3 cM. Linkage analysis revealed nine major groups with 15 or more markers each and two small LGs with two markers each, and 36 unlinked markers. The study reported assigning of 11 new SSRs on the linkage map. Of the 66 markers with aberrant segregation, 14 were unlinked and the remaining 52 were mapped. ISSR and RAPD markers were found to be useful in map construction and saturation. The current map represents maximum coverage of lentil genome and could be used for identification of QTL regions linked to agronomic traits, and for marker-assisted selection in lentil.  相似文献   
5.

Background

Antigen-specific regulatory T cells (Tregs) have proven to be effective in reversing established autoimmunity in type 1 diabetes (T1D). Cord blood (CB) can serve as an efficient and safe source for Tregs for antigen-specific immunomodulation in T1D, a strategy that is yet to be explored. Therefore, we assessed the potential of CB in generation of proinsulin (PI)-specific Tregs by using HLA class II tetramers.

Methods

We analyzed the frequency of PI-specific natural Tregs (nTregs) and induced Tregs (iTregs) derived from the CB as well as peripheral blood (PB) of patients with T1D and healthy control subjects. For this, CD4+CD25+CD127low and CD4+CD25-T cells were cultured in the presence of PI-derived peptides, transforming growth factor (TGF)-β and rapamycin. PI-specific Tregs were then selected using allele-specific HLA II tetramers loaded with PI-derived peptides, followed by suppression assays.

Results

Following stimulation, we observed that CB harbors a significantly higher frequency of PI-specific Tregs than PB of subjects with T1D (P?=?0.0003). Further, the proportion of PI-specific Tregs was significantly higher in both the nTreg (P?=?0.01) and iTreg (P?=?0.0003) compartments of CB as compared with PB of subjects with T1D. In co-culture experiments, the PI-specific Tregs suppressed the proliferation of effector T cells significantly (P?=?0.0006). The expanded nTregs were able to retain hypomethylation status at their Tregs-specific demethylated region (TSDR), whereas iTregs were unable to acquire the characteristic demethylation pattern.

Conclusion

Our study demonstrates that CB can serve as an excellent source for generation of functional antigen-specific Tregs for immunotherapeutic approaches in subjects with T1D.  相似文献   
6.
Sorghum grain (two varieties) was modified to different water contents (12% to 16% wet weight basis) and heated to 60°C, 70°C and 80°C for periods of 4, 8 and 12 min. Germination, seedling vigour, seedling dry matter, free fatty acid (FFA) content, fungal contamination and infestation with the insect pest Rhyzopertha dominica (F.) were all markedly affected by heat treatment. The effectiveness of the heat treatment was also influenced by the size of the sample used. Heat treatment at 60°C and 70°C resulted in germination being unaffected or stimulated while at 80°C and the higher water contents significantly reduced, when compared to untreated controls. The dry matter of seedlings, and seedling vigour was positively correlated with germination and heat treatment. Heat treatment had no effect on FFA. All stages of the insect pest, R. dominica, were destroyed at 70°C and an 8 min exposure time. However, the water content of the sorghum was critical in determining the efficacy against this pest. The percentage fungal contamination of grain was reduced from 90% to about 25% by heat treatment. However, some grain fungi, particularly Eurotium spp., Aspergillus niger and Penicillium spp. could still be isolated from sorghum grain treated at 80°C for up to 12 minutes.  相似文献   
7.
8.
Flag leaves and ears of spring wheat cv. Timmo (in 1980) and winter wheat cv. Maris Huntsman in 1981 and 1982 were colonised by a variety of micro-organisms whose numbers increased rapidly between anthesis and harvest. The predominant mycoflora were yeasts, yeast-like fungi and filamentous fungi which included Cladosporium spp., Verticillium lecanii, Alternaria alternata, Fusarium spp. and Epicoccum nigrum. Although similar species were isolated, their relative abundance on flag leaves and ears differed. The fungicide captafol was most effective as a protectant and significantly decreased populations of fungi on flag leaves and ears for 6 and 4 wk respectively, compared to untreated controls. Benomyl and Delsene M (carbendazim + maneb) were the most effective of the systemic sprays and formulations. In general, fungicides affected populations of yeasts, yeast-like fungi and Cladosporium spp. most while Alternaria was tolerant of all treatments. Yields of winter wheat were increased in two seasons by an average 0–2 t ha-1 (2–4%) following a single late fungicide treatment at G.S. 50 or 60 and 0–41 t ha-1 (5-1%) when this was combined with an early spray against foliar diseases (G.S. 38–40). Individual treatments increased yield by up to 12% with little difference between applications at G.S. 50 or 60. The yield benefit came mainly from increased 1000-grain weights. Germination of the treated grain was increased only slightly.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号