首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   5篇
  国内免费   1篇
  2022年   4篇
  2021年   8篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   5篇
  2015年   5篇
  2014年   6篇
  2013年   4篇
  2012年   7篇
  2011年   10篇
  2010年   6篇
  2009年   3篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   5篇
  2001年   1篇
  2000年   4篇
  1998年   2篇
  1997年   2篇
  1995年   3篇
  1994年   1篇
  1990年   1篇
  1988年   1篇
  1979年   1篇
  1967年   1篇
排序方式: 共有97条查询结果,搜索用时 31 毫秒
1.
Liu  Xiaoxiao  Zhang  Li  Thu  Pyone Myat  Min  Wenjian  Yang  Peng  Li  Ji  Li  Ping  Xu  Xiaojun 《中国科学:生命科学英文版》2021,64(8):1295-1310
Science China Life Sciences - Despite the use of many types of chemotherapies for pancreatic cancer, optimal efficacy has not been obtained so far. Pancreatic cancer shows a high incidence of TP53...  相似文献   
2.
Journal of Mammalian Evolution - We addressed the spatiotemporal characteristics of four commensal rodent species occurring in Myanmar in comparison with other areas of the Indo-Malayan region. We...  相似文献   
3.
Rhoptry-associated membrane antigen (RAMA) is an abundant glycophosphatidylinositol (GPI)-anchored protein that is embedded within the lipid bilayer and is implicated in parasite invasion. Antibody responses against rhoptry proteins are produced by individuals living in a malaria-endemic area, suggesting the immunogenicity of Plasmodium vivax RAMA (PvRAMA) for induction of immune responses during P. vivax infection. To determine whether PvRAMA contributes to the acquisition of immunity to malaria and could be a rational candidate for a vaccine, the presence of memory T cells and the stability of the antibody response against PvRAMA were evaluated in P. vivax-exposed individuals. The immunogenicity of PvRAMA for the induction of T cell responses was evaluated by in vitro stimulation of peripheral blood mononuclear cells (PBMCs). High levels of interferon (IFN)-γ and interleukin (IL)-10 cytokines were detected in the culture supernatant of PBMCs, and the CD4+ T cells predominantly produced IL-10 cytokine. The levels of total anti-PvRAMA immunoglobulin G (IgG) antibody were significantly elevated, and these antibodies persisted over the 12 months of the study. Interestingly, IgG1, IgG2 and IgG3 were the major antibody subtypes in the response to PvRAMA. The frequency of IgG3 in specific to PvRAMA antigen maintained over 12 months. These data could explain the immunogenicity of PvRAMA antigen in induction of both cell-mediated and antibody-mediated immunity in natural P. vivax infection, in which IFN-γ helps antibody class switching toward the IgG1, IgG2 and IgG3 isotypes and IL-10 supports PvRAMA-specific antibody production.  相似文献   
4.
Sphingosine 1-phosphate (S1P), a multifunctional lipid mediator, regulates lymphocyte trafficking, vascular permeability, and angiogenesis by activation of the S1P1 receptor. This receptor is activated by FTY720-P, a phosphorylated derivative of the immunosuppressant and vasoactive compound FTY720. However, in contrast to the natural ligand S1P, FTY720-P appears to act as a functional antagonist, even though the mechanisms involved are poorly understood. In this study, we investigated the fate of endogenously expressed S1P1 receptor in agonist-activated human umbilical vein endothelial cells and human embryonic kidney 293 cells expressing green fluorescent protein-tagged S1P1. We show that FTY720-P is more potent than S1P at inducing receptor degradation. Pretreatment with an antagonist of S1P1, VPC 44116, prevented receptor internalization and degradation. FTY720-P did not induce degradation of internalization-deficient S1P1 receptor mutants. Further, small interfering RNA-mediated down-regulation of G protein-coupled receptor kinase-2 and beta-arrestins abolished FTY720-P-induced S1P1 receptor degradation. These data suggest that agonist-induced phosphorylation of S1P1 and subsequent endocytosis are required for FTY720-P-induced degradation of the receptor. S1P1 degradation is blocked by MG132, a proteasomal inhibitor. Indeed, FTY720-P strongly induced polyubiquitinylation of S1P1 receptor, whereas S1P at concentrations that induced complete internalization was not as efficient, suggesting that receptor internalization is required but not sufficient for ubiquitinylation and degradation. We propose that the ability of FTY720-P to target the S1P1 receptor to the ubiquitinylation and proteasomal degradation pathway may at least in part underlie its immunosuppressive and anti-angiogenic properties.  相似文献   
5.
Maung SM  Jenny A 《Organogenesis》2011,7(3):165-179
In all multicellular organisms, epithelial cells are not only polarized along the apical-basal axis, but also within the epithelial plane, giving cells a sense of direction. Planar cell polarity (PCP) signaling regulates establishment of polarity within the plane of an epithelium. The outcomes of PCP signaling are diverse and include the determination of cell fates, the generation of asymmetric but highly aligned structures, such as the stereocilia in the human inner ear or the hairs on a fly wing, or the directional migration of cells during convergence and extension during vertebrate gastrulation. In humans, aberrant PCP signaling can result in severe developmental defects, such as open neural tubes (spina bifida), and can cause cystic kidneys. In this review, we discuss the basic mechanism and more recent findings of PCP signaling focusing on Drosophila melanogaster, the model organism in which most key PCP components were initially identified.  相似文献   
6.

Background

Well differentiated papillary mesothelioma of the peritoneum (WDPMP) is a rare variant of epithelial mesothelioma of low malignancy potential, usually found in women with no history of asbestos exposure. In this study, we perform the first exome sequencing of WDPMP.

Results

WDPMP exome sequencing reveals the first somatic mutation of E2F1, R166H, to be identified in human cancer. The location is in the evolutionarily conserved DNA binding domain and computationally predicted to be mutated in the critical contact point between E2F1 and its DNA target. We show that the R166H mutation abrogates E2F1's DNA binding ability and is associated with reduced activation of E2F1 downstream target genes. Mutant E2F1 proteins are also observed in higher quantities when compared with wild-type E2F1 protein levels and the mutant protein's resistance to degradation was found to be the cause of its accumulation within mutant over-expressing cells. Cells over-expressing wild-type E2F1 show decreased proliferation compared to mutant over-expressing cells, but cell proliferation rates of mutant over-expressing cells were comparable to cells over-expressing the empty vector.

Conclusions

The R166H mutation in E2F1 is shown to have a deleterious effect on its DNA binding ability as well as increasing its stability and subsequent accumulation in R166H mutant cells. Based on the results, two compatible theories can be formed: R166H mutation appears to allow for protein over-expression while minimizing the apoptotic consequence and the R166H mutation may behave similarly to SV40 large T antigen, inhibiting tumor suppressive functions of retinoblastoma protein 1.  相似文献   
7.
For screening a pool of potential substrates that load carrier domains found in nonribosomal peptide synthetases, large molecule mass spectrometry is shown to be a new, unbiased assay. Combining the high resolving power of Fourier transform mass spectrometry with the ability of adenylation domains to select their own substrates, the mass change that takes place upon formation of a covalent intermediate thus identifies the substrate. This assay has an advantage over traditional radiochemical assays in that many substrates, the substrate pool, can be screened simultaneously. Using proteins on the nikkomycin, clorobiocin, coumermycin A1, yersiniabactin, pyochelin, and enterobactin biosynthetic pathways as proof of principle, preferred substrates are readily identified from substrate pools. Furthermore, this assay can be used to provide insight into the timing of tailoring events of biosynthetic pathways as demonstrated using the bromination reaction found on the jamaicamide biosynthetic pathway. Finally, this assay can provide insight into the role and function of orphan gene clusters for which the encoded natural product is unknown. This is demonstrated by identifying the substrates for two NRPS modules from the pksN and pksJ genes that are found on an orphan NRPS/PKS hybrid cluster from Bacillus subtilis. This new assay format is especially timely for activity screening in an era when new types of thiotemplate assembly lines that defy classification are being discovered at an accelerating rate.  相似文献   
8.
Cytochrome c oxidase (CcO) catalyzes the reduction of molecular oxygen to water using ferrocytochrome c (cyt c(2+)) as the electron donor. In this study, the oxidation of horse cyt c(2+) by CcO from Rhodobacter sphaeroides, was monitored using stopped-flow spectrophotometry. A novel analytic procedure was applied in which the spectra were deconvoluted into the reduced and oxidized forms of cyt c by a least-squares fitting method, yielding the reaction rates at various concentrations of cyt c(2+) and cyt c(3+). This allowed an analysis of the effects of cyt c(3+) on the steady-state kinetics between CcO and cyt c(2+). The results show that cyt c(3+) exhibits product inhibition by two mechanisms: competition with cyt c(2+) at the catalytic site and, in addition, an interaction at a second site which further modulates the reaction of cyt c(2+) at the catalytic site. These results are generally consistent with previous reports, indicating the reliability of the new procedure. We also find that a 6×His-tag at the C-terminus of the subunit II of CcO affects the binding of cyt c at both sites. The approach presented here should be generally useful in spectrophotometric studies of complex enzyme kinetics. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   
9.
Selective (15)N isotope labeling of the cytochrome bo(3) ubiquinol oxidase from Escherichia coli with auxotrophs was used to characterize the hyperfine couplings with the side-chain nitrogens from residues R71, H98, and Q101 and peptide nitrogens from residues R71 and H98 around the semiquinone (SQ) at the high-affinity Q(H) site. The two-dimensional ESEEM (HYSCORE) data have directly identified N(ε) of R71 as an H-bond donor carrying the largest amount of unpaired spin density. In addition, weaker hyperfine couplings with the side-chain nitrogens from all residues around the SQ were determined. These hyperfine couplings reflect a distribution of the unpaired spin density over the protein in the SQ state of the Q(H) site and the strength of interaction with different residues. The approach was extended to the virtually inactive D75H mutant, where the intermediate SQ is also stabilized. We found that N(ε) of a histidine residue, presumably H75, carries most of the unpaired spin density instead of N(ε) of R71, as in wild-type bo(3). However, the detailed characterization of the weakly coupled (15)N atoms from selective labeling of R71 and Q101 in D75H was precluded by overlap of the (15)N lines with the much stronger ~1.6 MHz line from the quadrupole triplet of the strongly coupled (14)N(ε) atom of H75. Therefore, a reverse labeling approach, in which the enzyme was uniformly labeled except for selected amino acid types, was applied to probe the contribution of R71 and Q101 to the (15)N signals. Such labeling has shown only weak coupling with all nitrogens of R71 and Q101. We utilize density functional theory-based calculations to model the available information about (1)H, (15)N, and (13)C hyperfine couplings for the Q(H) site and to describe the protein-substrate interactions in both enzymes. In particular, we identify the factors responsible for the asymmetric distribution of the unpaired spin density and ponder the significance of this asymmetry to the quinone's electron transfer function.  相似文献   
10.
Scabies is a parasitic infestation of the skin by the mite Sarcoptes scabiei that causes significant morbidity worldwide, in particular within socially disadvantaged populations. In order to identify mechanisms that enable the scabies mite to evade human immune defenses, we have studied molecules associated with proteolytic systems in the mite, including two novel scabies mite serine protease inhibitors (SMSs) of the serpin superfamily. Immunohistochemical studies revealed that within mite-infected human skin SMSB4 (54 kDa) and SMSB3 (47 kDa) were both localized in the mite gut and feces. Recombinant purified SMSB3 and SMSB4 did not inhibit mite serine and cysteine proteases, but did inhibit mammalian serine proteases, such as chymotrypsin, albeit inefficiently. Detailed functional analysis revealed that both serpins interfered with all three pathways of the human complement system at different stages of their activation. SMSB4 inhibited mostly the initial and progressing steps of the cascades, while SMSB3 showed the strongest effects at the C9 level in the terminal pathway. Additive effects of both serpins were shown at the C9 level in the lectin pathway. Both SMSs were able to interfere with complement factors without protease function. A range of binding assays showed direct binding between SMSB4 and seven complement proteins (C1, properdin, MBL, C4, C3, C6 and C8), while significant binding of SMSB3 occurred exclusively to complement factors without protease function (C4, C3, C8). Direct binding was observed between SMSB4 and the complement proteases C1s and C1r. However no complex formation was observed between either mite serpin and the complement serine proteases C1r, C1s, MASP-1, MASP-2 and MASP-3. No catalytic inhibition by either serpin was observed for any of these enzymes. In summary, the SMSs were acting at several levels mediating overall inhibition of the complement system and thus we propose that they may protect scabies mites from complement-mediated gut damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号