首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
  2021年   2篇
  2016年   1篇
  2014年   1篇
  2011年   4篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1998年   3篇
  1995年   1篇
  1994年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
Toll-like receptor 9 (TLR9) activates the innate immune system in response to microbial DNA or mimicking oligodeoxynucleotides. Although cell stimulation experiments demonstrate the preferential activation of TLR9 by CpG-containing nucleic acids, direct binding investigations have reached contradictory conclusions with respect to the ability of this receptor to bind nucleic acids in a sequence-specific manner. To address this apparent discrepancy, we report the purification of the soluble ectodomain of human TLR9 with characterization of its ligand binding properties. We observe that TLR9 has a high degree of specificity in its ability to bind nucleic acids that contain CpG dinucleotides as well as higher order motifs that mediate species-specific activation. However, TLR9 is also functionally influenced by nucleic acids in a sequence-independent fashion as both stimulatory and nonstimulatory nucleic acids sensitize TLR9 for in vitro ligand binding as well as in vivo activation. We propose a model in which receptor activation is achieved in a sequence-dependent manner, and sensitivity is modulated by the absolute concentration of nucleic acids in a sequence-independent fashion. This model bears resemblance to that recently proposed for Toll in that activation is a two-step process in which formation of a ligand-bound monomer precedes formation of the activated dimer. In each model receptor sensitivity is determined within the second step with the crucial distinction that Toll undergoes negative cooperativity, whereas TLR9 is sensitized through a positive cooperative effect.  相似文献   
2.
3.
The TLRs 7, 8, and 9 stimulate innate immune responses upon recognizing pathogen nucleic acids. U-rich RNA sequences were recently discovered that stimulate human TLR7/8-mediated or murine TLR7-mediated immune effects. In this study we identified single-stranded RNA sequences containing defined sequence motifs that either preferentially activate human TLR8-mediated as opposed to TLR7- or TLR7/8-mediated immune responses. The identified TLR8 RNA motifs signal via TLR8 and fail to induce IFN-alpha from TLR7-expressing plasmacytoid dendritic cells but induce the secretion of Th1-like and proinflammatory cytokines from TLR8-expressing immune cells such as monocytes or myeloid dendritic cells. In contrast, RNA sequences containing the TLR7/8 motif signal via TLR7 and TLR8 and stimulate cytokine secretion from both TLR7- and TLR8-positive immunocytes. The TLR8-specific RNA sequences are able to trigger cytokine responses from human and bovine but not from mouse, rat, and porcine immune cells, suggesting that these species lack the capability to respond properly to TLR8 RNA ligands. In summary, we describe two classes of single-stranded TLR7/8 and TLR8 RNA agonists with diverse target cell and species specificities and immune response profiles.  相似文献   
4.
Influenza A viruses cause significant morbidity in swine, resulting in a substantial economic burden. Swine influenza virus (SIV) infection also poses important human public health concerns. Vaccination is the primary method for the prevention of influenza virus infection. Previously, we generated two elastase-dependent mutant SIVs derived from A/Sw/Saskatchewan/18789/02(H1N1): A/Sw/Sk-R345V (R345V) and A/Sw/Sk-R345A (R345A). These two viruses are highly attenuated in pigs, making them good candidates for a live-virus vaccine. In this study, the immunogenicity and the ability of these candidates to protect against SIV infection were evaluated in pigs. We report that intratracheally administrated R345V and R345A induced antigen-specific humoral and cell-mediated immunity characterized by increased production of immunoglobulin G (IgG) and IgA antibodies in the serum and in bronchoalveolar lavage fluid, high hemagglutination inhibition titers in serum, an enhanced level of lymphocyte proliferation, and higher numbers of gamma interferon-secreting cells at the site of infection. Based on the immunogenicity results, the R345V virus was further tested in a protection trial in which pigs were vaccinated twice with R345V and then challenged with homologous A/Sw/Saskatchewan/18789/02, H1N1 antigenic variant A/Sw/Indiana/1726/88 or heterologous subtypic H3N2 A/Sw/Texas/4199-2/9/98. Our data showed that two vaccinations with R345V provided pigs with complete protection from homologous H1N1 SIV infection and partial protection from heterologous subtypic H3N2 SIV infection. This protection was characterized by significantly reduced macroscopic and microscopic lung lesions, lower virus titers from the respiratory tract, and lower levels of proinflammatory cytokines. Thus, elastase-dependent SIV mutants can be used as live-virus vaccines against swine influenza in pigs.Swine influenza virus (SIV) is the causative pathogen of swine influenza, a highly contagious, acute respiratory viral disease of swine. The mortality of SIV-infected pigs is usually low, although morbidity may approach 100%. Swine influenza is characterized by sudden onset, coughing, respiratory distress, weight loss, fever, nasal discharge, and rapid recovery (38). SIV is a member of the influenza virus A genus in the Orthomyxoviridae family, and the virus has a genome consisting of eight segments of negative-sense single-stranded RNA (29). Epithelial cells in the swine respiratory tract have receptors for both avian and mammalian influenza viruses (13); thus, pigs could potentially serve as “mixing vessels” for the generation of new reassortant strains of influenza A virus that have pandemic capacity. There are a number of reports in which the direct transmission of influenza viruses from pigs to humans has been documented (6, 12, 52), and several of these cases have resulted in human fatalities (19, 35, 40, 53). Consequently, effective control of SIV would be beneficial to both humans and animals.Until 1998, classical H1N1 SIVs were the predominant isolates from pigs in the United States and Canada (5, 28). In 1997 to 1998, a dramatic change in the epidemiologic pattern of SIV began. Serological studies conducted by Olsen and colleagues in 1997 to 1998 detected a significant increase in H3-seropositive individuals, and H3N2 SIVs were isolated from pigs in both the United States and Canada (17, 54). Furthermore, reassortment between H3N2 viruses and classical H1N1 SIV resulted in the appearance of H1N2 reassortant viruses (14, 15). In addition to the isolation of H4N6 viruses, which are of duck origin, in pigs in Canada (16), wholly avian viruses of the H3N3 and H1N1 subtypes have also been isolated from Canadian pigs (18). In general, three major SIV subtypes exist, i.e., H1N1, H1N2, and H3N2, each of which has multiple genetic and antigenic variants circulating in North American swine populations (18, 28). The increased incidence of avian-like or human-like SIV reassortants raises concerns for public health and requires research devoted to the development of cross-protective SIV vaccines.Currently available swine influenza vaccines are based on inactivated whole virus of the H1N1 and H3N2 subtypes. Application of these vaccines reduces the severity of disease but does not provide consistent protection from infection (3, 22). In contrast to killed vaccines that are administered intramuscularly, intranasally administered live attenuated influenza vaccines (LAIV) induce an immune response at the site of natural infection. Therefore, an LAIV has the potential to induce broad humoral and cellular immune responses that could provide protection against antigenically different influenza viruses. LAIV based on attenuation of the virus by cold adaptation are available for humans (2) and horses (41). However, to date, no SIV LAIV are commercially available for use in swine in North America. Recent studies by Solorzano et al. showed that a mutant SIV with a truncated NS1 protein was highly attenuated in pigs (36). In addition, this SIV/NS1 LAIV was capable of stimulating a protective immune response against homologous SIVs and a partial protection against heterologous subtypic wild-type (WT) SIVs (31, 50). Stech and colleagues demonstrated that the conversion of a conserved cleavage site in the influenza virus hemagglutinin (HA) protein from a trypsin-sensitive site to an elastase-sensitive site results in in vivo attenuation of the influenza virus in mouse models (9, 37). Furthermore, these elastase-dependent LAIV were able to induce protective systemic and mucosal immune responses. Recently, we showed that two elastase-dependent SIVs derived from A/Sw/Saskatchewan/18789/02 (SIV/Sk02), R345V and R345A, are attenuated in their natural host, pigs (23). In the current study, we addressed the immunogenic and cross-protective abilities of these mutants.  相似文献   
5.
Use of spectral analysis to test hypotheses on the origin of pinnipeds   总被引:10,自引:4,他引:6  
The evolutionary origin of the pinnipeds (seals, sea lions, and walruses) is still uncertain. Most authors support a hypothesis of a monophyletic origin of the pinnipeds from a caniform carnivore. A minority view suggests a diphyletic origin with true seals being related to the mustelids (otters and ferrets). The phylogenetic relationships of the walrus to other pinniped and carnivore families are also still particularly problematic. Here we examined the relative support for mono- and diphyletic hypotheses using DNA sequence data from the mitochondrial small subunit (12S) rRNA and cytochrome b genes. We first analyzed a small group of taxa representing the three pinniped families (Phocidae, Otariidae, and Odobenidae) and caniform carnivore families thought to be related to them. We inferred phylogenetic reconstructions from DNA sequence data using standard parsimony and neighbor-joining algorithms for phylogenetic inference as well as a new method called spectral analysis (Hendy and Penny) in which phylogenetic information is displayed independently of any selected tree. We identified and compensated for potential sources of error known to lead to selection of incorrect phylogenetic trees. These include sampling error, unequal evolutionary rates on lineages, unequal nucleotide composition among lineages, unequal rates of change at different sites, and inappropriate tree selection criteria. To correct for these errors, we performed additional transformations of the observed substitution patterns in the sequence data, applied more stringent structural constraints to the analyses, and included several additional taxa to help resolve long, unbranched lineages in the tree. We find that there is strong support for a monophyletic origin of the pinnipeds from within the caniform carnivores, close to the bear/raccoon/panda radiation. Evidence for a diphyletic origin was very weak and can be partially attributed to unequal nucleotide compositions among the taxa analyzed. Subsequently, there is slightly more evidence for grouping the walrus with the eared seals versus the true seals. A more conservative interpretation, however, is that the walrus is an early, but not the first, independent divergence from the common pinniped ancestor.   相似文献   
6.
Cytosine-phosphate-guanosine (CpG)-DNA can induce an impressive array of innate immune responses that may directly or indirectly contribute to the clearance of infectious agents. Assays, such as lymphocyte proliferative responses, have been used to demonstrate that the immunostimulatory activity of CpG-DNA is conserved among a broad range of vertebrate species, but no studies have been completed to determine if qualitative differences exist among species for CpG-oligodeoxynucleotide (ODN)-induced innate immune responses. In this study, we assessed the capacity of a Class A (ODN 2216) and a Class B (ODN 2007) CpG-ODN to induce innate immune responses in two closely related species, ovine (n = 28) and bovine (n = 29). The secretion of interferon (IFN)-alpha and IFN-gamma and non-major histocompatability complex (MHC)-restricted cytotoxic activity were assayed with CpG-ODN-stimulated peripheral blood mononuclear cells (PBMC). These investigations revealed significant interspecies and intraspecies variation in the responses. As expected, ODN 2216 was a potent inducer of IFN-alpha secretion by both bovine and ovine PBMC, but ODN 2007 also induced dose-dependent, CpG-specific IFN-alpha secretion by ovine PBMC. In contrast, a significant dose-dependent, CpG-specific IFN-gamma secretion response was only observed following ODN 2216 stimulation of bovine PBMC. Furthermore, both ODN 2216 and ODN 2007 induced CpG-specific non-MHC-restricted cytotoxicity with ovine but not bovine PBMC. Finally, there was not a single assay in which PBMC from all sheep or cattle responded at a detectable level. A striking aspect of these results is that such marked differences in CpG-ODN induced innate responses existed both between and within two closely related species.  相似文献   
7.
Successful immune reconstitution would enhance resistance of beige/scid mice to chronic infection with Mycobacterium avium subspecies paratuberculosis, but may cause damage to intestinal tissue. Therefore, we investigated the effect of adoptive transfer of BALB/c mouse splenocytes on lesion severity and intestinal physiology in beige/scid mice infected with M. paratuberculosis. Mice were inoculated intraperitoneally (i.p.) with M. paratuberculosis, and two weeks later were inoculated i.p. with viable spleen cells from immune-competent BALB/c mice. Mice were necropsied 12 weeks after infection when engraftment of lymphocytes, clinical disease, pathologic lesions, and intestinal electrophysiologic parameters were evaluated. Lymphocytes were rare in control beige/scid mice not inoculated with spleen cells. In contrast, high numbers of CD4+, CD8+, and B220+ lymphocytes were detected in the spleen of all beige/scid mice (n = 24) inoculated with spleen cells, indicating that adoptive transfer resulted in successful engraftment of donor lymphocytes (immune reconstitution). Immune reconstitution of M. paratuberculosis-infected beige/ scid mice significantly reduced the severity of clinical disease and pathologic lesions, and numbers of bacteria in the liver. However, intestinal electrophysiologic parameters studied in vitro indicated that intestinal tissues from reconstituted beige/scid mice had reduced short-circuit current responses (due to reduced ion secretion) following electrical, glucose, and forskolin stimulation. These abnormal responses suggested that neural or epithelial cells in the intestine were damaged. We conclude that successful immune reconstitution of beige/scid mice enhance their resistance to M. paratuberculosis infection, but may cause pathophysiologic changes associated with intestinal inflammation.  相似文献   
8.
9.
We investigated whether infection of beige/scid mice with Mycobacterium avium subspecies paratuberculosis can induce intestinal pathophysiologic changes. Six-week-old beige/scid mice were inoculated intraperitoneally with M. paratuberculosis, then were killed 32 weeks after inoculation when the small intestine was evaluated for physiologic and morphologic abnormalities. All infected mice developed clinical disease. The lamina propria of the intestine from infected mice was mildly infiltrated with mononuclear cells containing acid-fast bacteria, and had significantly increased villus width. In vitro physiologic studies in Ussing chambers indicated that M. paratuberculosis infection caused significant abnormalities in intestinal transport parameters. Baseline short circuit current and potential difference were abnormally high in tissues from infected, compared with control mice, indicative of increased ion secretion. Baseline conductance was significantly decreased in infected mice, suggesting that intestinal tissue from infected mice was less permeable to ions. The change in short circuit current following transmural electrical and glucose stimulation was significantly reduced in intestines from infected mice, suggesting that inflamed intestine had neural and/or epithelial cell damage. We conclude that infection of beige/scid mice with M. paratuberculosis triggers significant intestinal pathophysiologic changes consistent with chronic inflammation. These functional abnormalities may contribute to the pathogenesis of the wasting syndrome seen in bovids with paratuberculosis. This animal model provides evidence that T cell-independent mechanisms are sufficient to cause mucosal pathophysiologic changes and inflammation in response to a specific pathogen, and may be of relevance to inflammatory bowel disease in humans.  相似文献   
10.
We recently reported a novel interleukin-10 (IL-10)-secreting CD21+ B cell population in jejunal Peyer’s patches (JPP) of sheep with a regulatory function (Bregs) suppressing Toll-like receptor 9 (TLR9)-induced cytokine responses. However, little is known about the development of these cells. Therefore, we investigate their existence in JPP cells from fetal and newborn lambs. CD21+ B cells were purified from JPP cells by magnetic cell sorting and subsequently stimulated with the TLR9 agonist, CpG ODN (CpG oligodeoxynucleotide). Lymphocyte proliferative responses, cytokine production (IL-10, IL-12 and interferon-γ [INF-γ]) and antibody secretion were assayed. We found that fetal and neonatal CD21+ B cells spontaneously secreted high levels of IL-10 regardless of CpG stimulation but that these cells did not produce any IL-12 or INF-γ upon stimulation with CpG. The observed responses are consistent with those previously reported for Bregs characterized in JPP of older lambs. Surprisingly, unlike in older lambs, fetal and neonatal JPP CD21+ B cells proliferated in response to CpG stimulation. Our investigations of fetal and neonatal lambs provide evidence for the development of IL-10-secreting CD21+ B cells in PPs prior to antigen exposure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号