首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2018年   1篇
  2011年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Aspergillus niger produced high levels of naringinase using easily available, inexpensive industrial waste residues such as rice bran, wheat bran, sugar cane bagasse, citrus peel, and press mud in solid‐state fermentation (SSF). Among these, rice bran was found to be the best substrate. Naringinase production was highest after 96 h of incubation at 27°C and at a substrate‐to‐moisture ratio of 1:1 w/v. Supplementation of the medium with 10% naringin caused maximum induction. An inoculum age of 72 h and an inoculum level of 15% resulted in maximum production of naringinase. Enzyme production was stimulated by the addition of nutrients such as naringin and peptone. Thus, A. niger produced a very high level of naringinase within a short time in solid‐state fermentation using inexpensive agro‐residues, a level that is much higher than reported for any other microbes.  相似文献   
2.
Cassava is the third significant source of calories after rice and maize in tropical countries. The annual production of cassava crop is approximately 550 million metric tons (MMT) which generates about 350 MMT of cassava solid residues, including peel, bagasse, stem, rhizome, and leaves. Cassava peel, bagasse, stem, and rhizome can be exploited for solid, liquid and gaseous biofuels production. Biofuels production from cassava starch started in the 1970s and researchers are now extensively studying cassava residues like peel, bagasse, stem, rhizome, and leaves to unravel their applications in biofuels production. However, there are technical and economic challenges to overcome the problems existing in the production of biofuels from cassava-based residues. This review provides a comprehensive summary of the techniques used for biofuels production from various cassava-based residues.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号