首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   24篇
  国内免费   4篇
  2022年   2篇
  2018年   5篇
  2017年   2篇
  2016年   7篇
  2015年   11篇
  2014年   11篇
  2013年   8篇
  2012年   7篇
  2011年   9篇
  2010年   6篇
  2009年   6篇
  2008年   7篇
  2007年   3篇
  2006年   9篇
  2005年   9篇
  2004年   8篇
  2003年   4篇
  2002年   3篇
  2001年   6篇
  2000年   4篇
  1999年   3篇
  1998年   6篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1993年   2篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1983年   4篇
  1978年   2篇
  1973年   1篇
  1967年   1篇
排序方式: 共有161条查询结果,搜索用时 15 毫秒
1.
Amino acid sequences of enzymes that catalyze hydrolysis or phosphorolysis of the N-glycosidic bond in nucleosides and nucleotides (nucleosidases and phosphoribosyltransferases) were explored using computer methods for database similarity search and multiple alignment. Two new families, each including bacterial and eukaryotic enzymes, were identified. Family I consists of Escherichia coli AMP hydrolase (Amn), uridine phosphorylase (Udp), purine phosphorylase (DeoD), uncharacterized proteins from E. coli and Bacteroides uniformis, and, unexpectedly, a group of plant stress-inducible proteins. It is hypothesized that these plant proteins have evolved from nucleosidases and may possess nucleosidase activity. The proteins in this new family contain 3 conserved motifs, one of which was found also in eukaryotic purine nucleosidases, where it corresponds to the nucleoside-binding site. Family II is comprised of bacterial and eukaryotic thymidine phosphorylases and anthranilate phosphoribosyltransferases, the relationship between which has not been suspected previously. Based on the known tertiary structure of E. coli thymidine phosphorylase, structural interpretation was given to the sequence conservation in this family. The highest conservation is observed in the N-terminal alpha-helical domain, whose exact function is not known. Parts of the conserved active site of thymidine phosphorylases and anthranilate phosphoribosyltransferases were delineated. A motif in the putative phosphate-binding site is conserved in family II and in other phosphoribosyltransferases. Our analysis suggests that certain enzymes of very similar specificity, e.g., uridine and thymidine phosphorylases, could have evolved independently. In contrast, enzymes catalyzing such different reactions as AMP hydrolysis and uridine phosphorolysis or thymidine phosphorolysis and phosphoribosyl anthranilate synthesis are likely to have evolved from common ancestors.  相似文献   
2.
The region of the clock gene period (per) that encodes a repetitive tract of threonine-glycine (Thr-Gly) pairs has been compared between Dipteran species both within and outside the Drosophilidae. All the non- Drosophilidae sequences in this region are short and present a remarkably stable picture compared to the Drosophilidae, in which the region is much larger and extremely variable, both in size and composition. The accelerated evolution in the repetitive region of the Drosophilidae appears to be mainly due to an expansion of two ancestral repeats, one encoding a Thr-Gly dipeptide and the other a pentapeptide rich in serine, glycine, and asparagine or threonine. In some drosophilids the expansion involves a duplication of the pentapeptide sequence, but in Drosophila pseudoobscura both the dipeptide and the pentapeptide repeats are present in larger numbers. In the nondrosophilids, however, the pentapeptide sequence is represented by one copy and the dipeptide by two copies. These observations fulfill some of the predictions of recent theoretical models that have simulated the evolution of repetitive sequences.   相似文献   
3.
The availability of complete genome sequences of cellular life forms creates the opportunity to explore the functional content of the genomes and evolutionary relationships between them at a new qualitative level. With the advent of these sequences, the construction of a minimal gene set sufficient for sustaining cellular life and reconstruction of the genome of the last common ancestor of bacteria, eukaryotes, and archaea become realistic, albeit challenging, research projects. A version of the minimal gene set for modern-type cellular life derived by comparative analysis of two bacterial genomes, those of Haemophilus influenzae and Mycoplasma genitalium, consists of ∼250 genes. A comparison of the protein sequences encoded in these genes with those of the proteins encoded in the complete yeast genome suggests that the last common ancestor of all extant life might have had an RNA genome.  相似文献   
4.
Genetic elements of plant viruses as tools for genetic engineering.   总被引:3,自引:0,他引:3       下载免费PDF全文
Viruses have developed successful strategies for propagation at the expense of their host cells. Efficient gene expression, genome multiplication, and invasion of the host are enabled by virus-encoded genetic elements, many of which are well characterized. Sequences derived from plant DNA and RNA viruses can be used to control expression of other genes in vivo. The main groups of plant virus genetic elements useful in genetic engineering are reviewed, including the signals for DNA-dependent and RNA-dependent RNA synthesis, sequences on the virus mRNAs that enable translational control, and sequences that control processing and intracellular sorting of virus proteins. Use of plant viruses as extrachromosomal expression vectors is also discussed, along with the issue of their stability.  相似文献   
5.
6.
7.
8.
We have analyzed the conserved regions of the gene coding for the circumsporozoite protein (CSP) in 12 species of Plasmodium, the malaria parasite. The closest evolutionary relative of P. falciparum, the agent of malignant human malaria, is P. reichenowi, a chimpanzee parasite. This is consistent with the hypothesis that P. falciparum is an ancient human parasite, associated with humans since the divergence of the hominids from their closest hominoid relatives. Three other human Plasmodium species are each genetically indistinguishable from species parasitic to nonhuman primates; that is, for the DNA sequences included in our analysis, the differences between species are not greater than the differences between strains of the human species. The human P. malariae is indistinguishable from P. brasilianum, and P. vivax is indistinguishable from P. simium; P. brasilianum and P. simium are parasitic to New World monkeys. The human P. vivax-like is indistinguishable from P. simiovale, a parasite of Old World macaques. We conjecture that P. malariae, P. vivax, and P. vivax-like are evolutionarily recent human parasites, the first two at least acquired only within the last several thousand years, and perhaps within the last few hundred years, after the expansion of human populations in South America following the European colonizations. We estimate the rate of evolution of the conserved regions of the CSP gene as 2.46 x 10(-9) per site per year. The divergence between the P. falciparum and P. reichenowi lineages is accordingly dated 8.9 Myr ago. The divergence between the three lineages leading to the human parasites is very ancient, about 100 Myr old between P. malariae and P. vivax (and P. vivax-like) and about 165 Myr old between P. falciparum and the other two.   相似文献   
9.
Photosynthetic enhancement studies performed at 619 nm (excitation of Systems I and II) and at 446 nm (mainly excitation of System I) revealed an 18% photosynthetic enhancement simultaneously with a 31% reduction in glycolate excretion. This observation supports the hypothesis that some glycolate may be consumed in an oxidation process associated with System I when System II is poorly excited and the supply of electrons from the water splitting process of photosynthesis is low.  相似文献   
10.
There is strong evidence that vasodilatory nitric oxide (NO) donors have anabolic effects on bone in humans. Parathyroid hormone (PTH), the only osteoanabolic drug currently approved, is also a vasodilator. We investigated whether the NO synthase inhibitor L‐NAME might alter the effect of PTH on bone by blocking its vasodilatory effect. BALB/c mice received 28 daily injections of PTH[1–34] (80 µg/kg/day) or L‐NAME (30 mg/kg/day), alone or in combination. Hindlimb blood perfusion was measured by laser Doppler imaging. Bone architecture, turnover and mechanical properties in the femur were analysed respectively by micro‐CT, histomorphometry and three‐point bending. PTH increased hindlimb blood flow by >30% within 10 min of injection (P < 0.001). Co‐treatment with L‐NAME blocked the action of PTH on blood flow, whereas L‐NAME alone had no effect. PTH treatment increased femoral cortical bone volume and formation rate by 20% and 110%, respectively (P < 0.001). PTH had no effect on trabecular bone volume in the femoral metaphysis although trabecular thickness and number were increased and decreased by 25%, respectively. Co‐treatment with L‐NAME restricted the PTH‐stimulated increase in cortical bone formation but had no clear‐cut effects in trabecular bone. Co‐treatment with L‐NAME did not affect the mechanical strength in femurs induced by iPTH. These results suggest that NO‐mediated vasorelaxation plays partly a role in the anabolic action of PTH on cortical bone. © 2016 The Authors. Cell Biochemistry and Function published by John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号