首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
  2013年   4篇
  2012年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  1999年   1篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1987年   2篇
  1985年   3篇
  1982年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
In the isolated and perfused rat heart, the addition of morphine, methionine-enkephalin or leucine-enkephalin to the coronary perfusate, significantly reduces the mechanical activity by negatively affecting both the heart rate and the developed tension. These effects are dose dependent and maximally evident with leucine-enkephalin. Furthermore all the opioids strongly reduce the activity of isoproterenol-stimulated hearts. The suggestion is made that opioid peptides directly influence the cardiac mechanical activity possibly by interacting with membrane-receptor systems.  相似文献   
2.
NADH-dependent formation of superoxide anions (O-2) by rabbit cardiac submitochondrial particles (SMP) was stimulated after exposure of the isolated heart to 90 min of ischemic perfusion. This effect was more evident in the rotenone-inhibited region of the respiratory electron chain in comparison to the antimycin-inhibited region. The kinetic study of the NADH-dependent reaction showed that at the level of the rotenone-inhibited region, ischemia reduced Km value for NADH, differently from the antimycin-inhibited region where the kinetic constants remain unchanged. No significant changes of the Vmax values were observed in both SMP-producing O-2 sites.

The ischemic perfusions also produced a reduction of mitochondrial function, particularly evident when glutamate as substrate was studied.  相似文献   
3.
We have developed a rapid and precise method for glutathione quantitation by capillary electrophoresis, that allows a low amount of both redox forms to be measured. Small fragments of rat heart or liver tissues (20 mg wet weight) and the corresponding mitochondria (1 mg protein) were homogenized in 1% perchloric acid and the acid-soluble phase ultrafiltered by centrifugation with a microconcentrator (Mr cut-off 3000 Da). The analysis was performed at a constant temperature (28°C) using a Beckman P/ACE System 2100, equipped with a UV absorbance detector set to 200 nm. The limit of quantitation in heart tissue was 1.8 μM for GSH and 1.2 μM for GSSG. Myocardial concentrations of GSH and GSSG were 8.1±2.6 and 0.45±0.15 (nmol/mg protein±S.D.), respectively. The ratio of GSH to GSSG was 17.8±1.3 for heart tissue, whereas it was much higher (>100) in the mitochondria. An oxidative stress decreased the myocardial tissue GSH/GSSG ratio, indicating that the CE analysis of both glutathione forms is also a useful method to study biological redox modification.  相似文献   
4.
Glucose transport into cells may be regulated by a variety of conditions, including ischemia. We investigated whether some enzymes frequently involved in the metabolic adaptation to ischemia are also required for glucose transport activation. Ischemia was simulated by incubating during 3 h H9c2 cardiomyoblasts in a serum- and glucose-free medium in hypoxia. Under these conditions 2-deoxy-d-[2,6-3H]-glucose uptake was increased (57% above control levels, p < 0.0001) consistently with GLUT1 and GLUT4 translocation to sarcolemma. Tyrosine kinases inhibition via tyrphostin had no effect on glucose transport up-regulation induced by simulated ischemia. On the other hand, chelerythrine, a broad range inhibitor of protein kinase C isoforms, and rottlerin, an inhibitor of protein kinase C delta, completely prevented the stimulation of the transport rate. A lower activation of hexose uptake (19%, p < 0.001) followed also treatment with Gö6976, an inhibitor of conventional protein kinases C. Finally, PD98059-mediated inhibition of the phosphorylation of ERK 1/2, a downstream mitogen-activated protein kinase (MAPK), only partially reduced the activation of glucose transport induced by simulated ischemia (31%, p < 0.01), while SB203580, an inhibitor of p38 MAPK, did not exert any effect. These results indicate that stimulation of protein kinase C delta is strongly related to the up-regulation of glucose transport induced by simulated ischemia in cultured cardiomyoblasts and that conventional protein kinases C and ERK 1/2 are partially involved in the signalling pathways mediating this process.  相似文献   
5.
The efficiency of regenerative medicine can be ameliorated by improving the biological performances of stem cells before their transplantation. Several ex-vivo protocols of non-damaging cell hypoxia have been demonstrated to significantly increase survival, proliferation and post-engraftment differentiation potential of stem cells. The best results for priming cultured stem cells against a following, otherwise lethal, ischemic stress have been obtained with brief intermittent episodes of hypoxia, or anoxia, and reoxygenation in accordance with the extraordinary protection afforded by the conventional maneuver of ischemic preconditioning in severely ischemic organs. These protocols of hypoxic preconditioning can be rather easily reproduced in a laboratory; however, more suitable pharmacological interventions inducing stem cell responses similar to those activated in hypoxia are considered among the most promising solutions for future applications in cell therapy. Here we want to offer an up-to-date review of the molecular mechanisms translating hypoxia into beneficial events for regenerative medicine. To this aim the involvement of epigenetic modifications, microRNAs, and oxidative stress, mainly activated by hypoxia inducible factors, will be discussed. Stem cell adaptation to their natural hypoxic microenvironments (niche) in healthy and neoplastic tissues will be also considered.  相似文献   
6.
Highly purified sarcolemmal membranes prepared from bovine heart muscle produced superoxide radicals, especially when incubated with NADPH or NADH, as revealed by the oxidation of adrenaline to adrenochrome. The reaction was inhibited by superoxide dismutase or by heat denaturation of the sarcolemmal vesicles. Less evident was the inhibitory effect shown by catalase, while mannitol, deferoxamine or dicumarol were uneffective. The formation of adrenochrome was an oxygen-dependent reaction with a Km for adrenaline of 8-10 microM. Moreover, the reaction was inhibited by preincubating the sarcolemmal membranes with propranolol, while the alpha-antagonist phentolamine was without effect. Adrenaline oxidation was unaffected by the presence of exogenous linolenic acid or methylarachidonic acid, while arachidonic acid, with a Km for this reaction of 175 microM, showed a marked stimulatory effect. This activation was suppressed by superoxide dismutase, catalase and NaCN, while mannitol was without effect. Moreover, the reaction was blocked by the cyclooxygenase inhibitor indomethacin, differently from the lipooxygenase inhibitor nordihydroguaiaretic acid. Also, the incubation of the sarcolemmal vesicles with phospholipase A2 and calcium produced a stimulation of adrenochrome formation which was partially suppressed by albumin. In the experiments using arachidonic acid or phospholipase A2, the addition of indomethacin blocked the adrenaline oxidation. These results indicate that arachidonic acid accentuated the heart sarcolemmal adrenochrome formation presumably by participating in the cyclooxygenase reaction.  相似文献   
7.

Objective

Biological evidence suggests that inflammation might induce type 2 diabetes (T2D), and epidemiological studies have shown an association between higher white blood cell count (WBC) and T2D. However, the association has not been systematically investigated.

Research Design and Methods

Studies were identified through computer-based and manual searches. Previously unreported studies were sought through correspondence. 20 studies were identified (8,647 T2D cases and 85,040 non-cases). Estimates of the association of WBC with T2D were combined using random effects meta-analysis; sources of heterogeneity as well as presence of publication bias were explored.

Results

The combined relative risk (RR) comparing the top to bottom tertile of the WBC count was 1.61 (95% CI: 1.45; 1.79, p = 1.5*10−18). Substantial heterogeneity was present (I2 = 83%). For granulocytes the RR was 1.38 (95% CI: 1.17; 1.64, p = 1.5*10−4), for lymphocytes 1.26 (95% CI: 1.02; 1.56, p = 0.029), and for monocytes 0.93 (95% CI: 0.68; 1.28, p = 0.67) comparing top to bottom tertile. In cross-sectional studies, RR was 1.74 (95% CI: 1.49; 2.02, p = 7.7*10−13), while in cohort studies it was 1.48 (95% CI: 1.22; 1.79, p = 7.7*10−5). We assessed the impact of confounding in EPIC-Norfolk study and found that the age and sex adjusted HR of 2.19 (95% CI: 1.74; 2.75) was attenuated to 1.82 (95% CI: 1.45; 2.29) after further accounting for smoking, T2D family history, physical activity, education, BMI and waist circumference.

Conclusions

A raised WBC is associated with higher risk of T2D. The presence of publication bias and failure to control for all potential confounders in all studies means the observed association is likely an overestimate.  相似文献   
8.
The efficiency of in vitro mesenchymal stem cell (MSC) differentiation into the myocardial lineage is generally poor. In order to improve cardiac commitment, bone marrow GFP+MSCs obtained from transgenic rats were cultured with adult wild type rat cardiomyocytes for 5 days in the presence of difluoromethylornithine (DFMO), an inhibitor of polyamine synthesis and cell proliferation. The percentage of GFP+MSCs showing cardiac myofibril proteins (cMLC2, cTnI) was about threefold higher after DFMO addition (3%) relative to the untreated control (1%). Another set of experiments was performed with cardiomyocytes incubated for 1 day in the absence of glucose and serum and under hypoxic conditions (pO2 < 1%), in order to simulate severe ischemia. The percentage of cardiac committed GFP+MSCs was about 5% when cultured with the hypoxic/starved cardiomyocytes and further increased to 7% after DFMO addition. The contemporary presence of putrescine in DFMO-treated cells markedly blunted differentiation, while the cytostatic mitomycin C was not able to induce cardiac commitment. The involvement of histone acetylation in DFMO-induced differentiation was evidenced by the strong attenuation of cardiac commitment exerted by anacardic acid, an inhibitor of histone acetylase. Moreover, the percentage of acetylated histone H3 significantly increased in bone marrow MSCs obtained from wild type rats and treated with DFMO. These results suggest that polyamine depletion can represent a useful strategy to improve MSC differentiation into the cardiac lineage, especially in the presence of cardiomyocytes damaged by an ischemic environment.  相似文献   
9.
Cardiac ischemia may be responsible for either the loss of endothelial nitric oxide synthase (eNOS) or changes in its activity, both conditions leading to coronary dysfunction. We investigated whether early ischemic preconditioning was able to preserve eNOS protein expression and function in the ischemic/reperfused myocardium. Langendorff-perfused rat hearts were subjected to 20 min global ischemia, followed by 30 min reperfusion (I/R). A second group of hearts was treated as I/R, but preconditioned with three cycles of 5 min-ischemia/5 min-reperfusion (IP). Cardiac contractility markedly decreased in I/R, consistently with the rise of creatine kinase (CK) activity in the coronary effluent, whilst ischemic preconditioning significantly improved all functional parameters and reduced the release of CK. Western blot analysis revealed that the amount of eNOS protein decreased by 54.2% in I/R with respect to control (p < 0.01). On the other hand, NOS activity was not significantly reduced in I/R, as well as cGMP tissue levels, suggesting that a parallel compensatory stimulation of this enzymatic activity occurred during ischemia/reperfusion. Ischemic preconditioning completely prevented the loss of eNOS. Moreover, both NOS activity and cGMP tissue level were significantly higher (p < 0.05) in IP (12.7 +/- 0.93 pmol/min/mg prot and 58.1 +/- 12.2 fmol/mg prot, respectively) than I/R (7.34 +/- 2.01 pmol/min/mg prot and 21.4 +/- 4.13 fmol/mg prot, respectively). This suggest that early ischemic preconditioning may be useful to accelerate the complete recovery of endothelial function by preserving the level of cardiac eNOS and stimulating the basal production of nitric oxide.  相似文献   
10.
The aim of this study was to evaluate the role of mitochondria in the recovery of cardiac energetics induced by ischaemic preconditioning at reperfusion. Isolated rat hearts were aerobically perfused (control), subjected to global ischaemia and reperfusion (reperfusion), or subjected to 3 brief cycles of ischaemia/reperfusion and then to the protocol of reperfusion (preconditioning). At the end of the perfusion, antimycin A was delivered to the heart for 25 min, to inhibit mitochondrial respiration and stimulate glycolysis. The increased amount of lactate released in the coronary effluent was correlated with the number of viable cells producing this end-product of glycolysis. Preconditioned hearts released 18% more lactate than reperfused hearts (p < 0.05). This result indicates that preconditioning partially preserved cell viability, as was also evidenced by the MTT assay performed on cardiac biopsies. The difference between antimycin A-stimulated and basal lactate concentration, representing the contribution of mitochondria to the overall energetics of cardiac tissue, was also 18% more elevated in the preconditioned hearts than in the reperfused hearts (p < 0.01). The study of the respiratory function of mitochondria isolated at the end of perfusion, showed that preconditioning did not improve the oxygen-dependent production of ATP (state 3 respiration, ADP/O). On the contrary, state 4 respiration, which is related to proton leakage, was 35.0% lower in the preconditioned group than reperfusion group (p < 0.05). Thus, preconditioning ameliorates cardiac energetics by preserving cell death, but without affecting mitochondrial oxidative phosphorylation. Mitochondria can contribute to cell survival by the attenuation of proton leak from inner membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号