首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2014年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Plant Cell, Tissue and Organ Culture (PCTOC) - CRISPR/Cas9 is a versatile and highly efficient genome editing tool used in many different plant species. In the present study, we compared the two...  相似文献   
2.
A successful in vitro Agrobacterium-mediated transformation protocol was developed for Mimulus aurantiacus, a model species for ecological and evolutionary genetics and a promising ornamental plant. Three binary vectors were tested, each containing the hptII selectable marker gene and one of the reporter genes: gusA, EGFP or ZsGreen, all of them under CaMV 35S promoter. Genetic transformation was achieved through 4 days of co-cultivation of leaf, petiole and hypocotyl explants with Agrobacterium tumefaciens strain LBA 4404. Explants produced transformed callus tissue on solid modified Murashige and Skoog medium supplemented with 1 mg L?1 6-benzylaminopurine, 0.5 mg L?1 1-naphthaleneacetic acid, 30 g L?1 sucrose and 20 or 50 mg L?1 hygromycin B. All three reporter genes were expressed in callus tissue but the intensity of expression gradually decreased during further plant development. The new reporter gene ZsGreen proved suitable for plant transformation experiments since very intense and bright fluorescence was detected. Out of 1,760 co-cultured explants, 110 plants were regenerated and all of them were found to be PCR positive for the selection and/or reporter genes. Chemiluminescent Southern blot analysis revealed that 91 % of the regenerated plants (100 T0 plants) contained T-DNA integrated in their genome. Transformation efficiency varied from 1.4 to 23.3 % for hypocotyl and petiole explants, respectively. Integration of some backbone sequences in plant genomes was confirmed in 75.3 % of T0 plants. Using this protocol, stable transformants expressing selectable marker gene hptII and one of the reporter genes (gusA, ZsGreen or EGFP) were obtained in 4–5 months.  相似文献   
3.
4.
Plant and Soil - Soils represent the natural habitat of entomopathogenic nematodes (EPNs). When moving in soil, EPNs are oriented to follow a chemical signal (chemotaxis). Cannabis sativa L. is...  相似文献   
5.
Plant breeders’ rights are undergoing dramatic changes due to changes in patent rights in terms of plant variety rights protection. Although differences in the interpretation of »breeder’s exemption«, termed research exemption in the 1991 UPOV, did exist in the past in some countries, allowing breeders to use protected varieties as parents in the creation of new varieties of plants, current developments brought about by patenting conventionally bred varieties with the European Patent Office (such as EP2140023B1) have opened new challenges. Legal restrictions on germplasm availability are therefore imposed on breeders while, at the same time, no practical information on how to distinguish protected from non-protected varieties is given. We propose here a novel approach that would solve this problem by the insertion of short DNA stretches (labels) into protected plant varieties by genetic transformation. This information will then be available to breeders by a simple and standardized procedure. We propose that such a procedure should consist of using a pair of universal primers that will generate a sequence in a PCR reaction, which can be read and translated into ordinary text by a computer application. To demonstrate the feasibility of such approach, we conducted a case study. Using the Agrobacterium tumefaciens transformation protocol, we inserted a stretch of DNA code into Nicotiana benthamiana. We also developed an on-line application that enables coding of any text message into DNA nucleotide code and, on sequencing, decoding it back into text. In the presented case study, a short command line coding the phrase »Hello world« was transformed into a DNA sequence that was inserted in the plant genome. The encoded message was reconstructed from the resulting T1 seedlings with 100 % accuracy. The feasibility and possible other applications of this approach are discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号