首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   39篇
  国内免费   1篇
  2021年   5篇
  2019年   4篇
  2018年   6篇
  2017年   2篇
  2016年   4篇
  2015年   12篇
  2014年   9篇
  2013年   4篇
  2012年   5篇
  2011年   13篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   8篇
  2006年   9篇
  2005年   10篇
  2004年   8篇
  2003年   9篇
  2002年   3篇
  2001年   7篇
  2000年   3篇
  1999年   9篇
  1998年   6篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   5篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   7篇
  1989年   4篇
  1988年   4篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1982年   4篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1975年   1篇
  1974年   3篇
  1972年   2篇
排序方式: 共有209条查询结果,搜索用时 15 毫秒
1.
The interaction between highly purified poly(ADP-ribose) polymerase from calf thymus and different topological forms of pBR322 DNA has been studied by gel retardation electrophoresis and electron microscopy. We show that: (i) in the absence of nicks on DNA the enzyme has a marked affinity for supercoiled (form I) DNA, (ii) in the presence of single stranded breaks poly(ADP-ribose) polymerase preferentially binds to form II, (iii) in all cases enzyme molecules are frequently located at DNA intersections, (iv) a cooperative binding of the enzyme on DNA occurs.  相似文献   
2.
3.
Poly(ADP-ribose)polymerase: a novel finger protein.   总被引:6,自引:3,他引:3       下载免费PDF全文
By Energy Dispersive X-ray fluorescence we have determined that calf thymus poly(ADP-ribose) polymerase binds two zinc ions per enzyme molecule. Using 65Zn (II) for detection of zinc binding proteins and polypeptides on western blots, we found that the zinc binding sites are localized in a 29 kd N-terminal fragment which is included in the DNA binding domain. Metal depletion and restoration experiments proved that zinc is essential for the binding of this fragment to DNA as tested by Southwestern assay. These results correlate with the existence of two putative zinc finger motifs present in the N-terminal part of the human enzyme. Poly(ADP-ribose)polymerase fingers could be involved in the recognition of DNA strand breaks and therefore in enzyme activation.  相似文献   
4.
Antibodies showing a high specificity for poly(ADP ribose) synthetase have been purified. A fraction binding nonspecifically to histones present in antiserum and non-immune serum has been demonstrated by immunoblotting and separated by histone-Sepharose chromatography. The antibody without the nonspecific binding fraction was analyzed by Western blot with calf thymus protein extract and was found to react only with a band at 116 kDa. There was no reaction with purified topoisomerase I, this weak activity was copurified with poly(ADP-ribose) synthetase preparation. The specific IgG fraction has been used for the visualization of the interaction of poly(ADP-ribose) synthetase with chromatin by indirect gold-labelling. This immunomicroscopic study suggests that the synthetase is located in the inner part of polynucleosomes and would be associated preferentially with the core nucleosome.  相似文献   
5.
Hydrolysis of protein-bound 32P-labelled poly(ADP-ribose) by poly(ADP-ribose) glycohydrolase shows that there is differential accessibility of poly(ADP-ribosyl)ated proteins in chromatin to poly(ADP-ribose) glycohydrolase. The rapid hydrolysis of hyper(ADP-ribosyl)ated forms of histone H1 indicates the absence of an H1 dimer complex of histone molecules. When the pattern of hydrolysis of poly(ADP-ribosyl)ated histones was analyzed it was found that poly(ADP-ribose) attached to histone H2B is more resistant than the polymer attached to histone H1 or H2A or protein A24. Polymer hydrolysis of the acceptors, which had been labelled at high substrate concentrations (greater than or equal to 10 microM), indicate that the only high molecular weight acceptor protein is poly(ADP-ribose) polymerase and that little processing of the enzyme occurs. Finally, electron microscopic evidence shows that hyper(ADP-ribosyl)ated poly(ADP-ribose) polymerase, which is dissociated from its DNA-enzyme complex, binds again to DNA after poly(ADP-ribose) glycohydrolase action.  相似文献   
6.
The interaction between purified calf thymus poly(ADP-ribose) polymerase and its activating co-purified DNA (sDNA) was investigated by electron microscopy. We have shown that the enzyme-DNA complex possesses a nucleosome-like structure. The enzyme-bound DNA (sDNA) was found to be enriched in single-stranded regions and branched structures, presumed to be replication forks. The auto-ribosylated polymerase as well as the branched poly(ADP-ribose) formed were visualized by dark field electron microscopy during the auto-ADP-ribosylation reaction and the possible mechanism of this phenomenon is discussed.  相似文献   
7.
The effect of poly(ADP-ribose) synthesis on chromatin structure was investigated by velocity sedimentation and electron microscopy. We demonstrate that locally relaxed regions can be generated within polynucleosome chains by the activity of their intrinsic poly(ADP-ribose)polymerase. This relaxation phenomenon is also shown to be NAD dependent and to be correlated with the formation of hyper(ADP-ribosyl)ated forms of histone H1. Evidence is also presented which suggests that hyper(ADP-ribosyl)ated histone H1 is neither released from the relaxed chromatin, nor does it seem to participate in polynucleosomal aggregation.  相似文献   
8.
The effect of poly(ADP-ribosyl)ation on native and H1-depleted chromatin was analyzed by gel electrophoresis, electron microscopy, and velocity sedimentation. In parallel, the interaction of automodified poly(ADP-ribose) polymerase with native and H1-depleted chromatin was analyzed. In H1-depleted chromatin histone H2B becomes the major poly(ADP-ribose) histone acceptor protein, whereas in native chromatin histone H1 was the major histone acceptor. Poly(ADP-ribosyl)ation of H1-depleted chromatin prevented the recondensation of polynucleosomes reconstituted with exogenous histone H1. This is probably due to the presence of modified poly(ADP-ribose) polymerase and hyper(ADP-ribosyl)ated histone H2B. Indeed, about 40% of the modified enzyme remained associated with H1-depleted chromatin, while less than 1% of the modified enzyme was bound to native chromatin. The influence of poly(ADP-ribosyl)ation on the chromatin conformation was also studied at the level of nucleosome in using monoclonal and polyclonal antibodies specific for individual histones and synthetic peptides of histones. In native chromatin incubated in the presence of Mg2+ there was a drop in the accessibility of histone epitopes to monoclonal and polyclonal antibodies whereas upon poly(ADP-ribosyl)ation their accessibility was found to remain even in the presence of Mg2+. In poly(ADP-ribosyl)ated H1-depleted chromatin an increased accessibility of some histone tails to antibodies was observed.  相似文献   
9.
The fusarium mycotoxin zearalenone was transformed in cell suspension cultures of Zea mays giving α- and β-zearalenol and the β-D-glu cos ides of zearalenone and α- and β-zearalenol. The structure of zearalenone-4-β-D-glucopyranoside was determined by liquid — chromatography-mass spectrometry and specific hydrolysis with β-glucosidase. α- and β-zearalenol and their glucosides were identified by co chromatography using tic and HPLC and glucosidase — treatment Up to 50% of the mycotoxin added was bound to a non extractable or “bound” residue fraction. After treating this residue by a sequential cell wall fractionation procedure, zearalenone was found to be bound mainly to starch, hemicellulose, and lignin fractions.  相似文献   
10.
Gene transfer is a major factor in bacterial evolution   总被引:17,自引:3,他引:14  
Lateral gene transfer in four strains of Salmonella enterica has been assessed using genomic subtraction. Strain LT2 (subspecies I serovar Typhimurium) chromosomal DNA was used as target and subtracted by three subspecies I strains of serovars Typhimurium (S21), Muenchen (S71), Typhi (M229), and a subspecies V strain (M321). Data from probing random cosmids of LT2 DNA with preparations of the residual LT2 DNA after subtraction were used to estimate the amounts of LT2 DNA not able to hybridize to strains S21, S71, M229, and M321 to be in the range of 84-106, 191-355, 305-629, and 778-1,286 kb, respectively. Several lines of evidence indicate that most of this DNA is from genes not present in strain M321 and not from genes that have diverged in sequence. The amounts correlate with the divergence of the four strains as revealed by multilocus enzyme electrophoresis and sequence variation of housekeeping genes. Sequence of 39 of the fragments from the M321 subtracted residual LT2 DNA revealed only six inserts of known gene function with evidence of both gain and loss of genes during the development of S. enterica clones. Sixteen of the 39 segments have 45% or lower G+C content, below the species average, but over half are within the normal range for the species. We conclude that even within a species, clones may differ by up to 20% of chromosomal DNA, indicating a major role for lateral transfer, and that on the basis of G+C content, a significant proportion of the DNA is from distantly related species.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号