首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   17篇
  2023年   1篇
  2018年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2006年   5篇
  2005年   5篇
  2004年   4篇
  2003年   5篇
  2002年   1篇
  2001年   5篇
  2000年   4篇
  1998年   1篇
  1997年   3篇
  1994年   4篇
  1992年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1981年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有68条查询结果,搜索用时 31 毫秒
1.
The substituted amphetamine 3,4 methylenedioxyamphetamine (MDA) is a popular recreational drug of abuse. Administration of MDA to experimental animals has been shown to induce damage to serotonergic axons and nerve terminals. However, there is a lack of information on whether these treatments can produce any long-term changes in behavioural performance particularly under stressful conditions. In the present study, MDA (7.5 mg/kg; i.p.) was administered twice daily to adult male Sprague Dawley rats for four days. Four weeks following the last dose, spontaneous behaviors of these animals were tracked and scored in a novel "open field" environment using an automated video registration and computer interpretation system. Changes in behavior were observed in MDA treated animals including reductions in exploratory oriented behaviors (locomotion and rearing) and increases in grooming behavior when compared to vehicle treated controls. MDA-treated animals also displayed an enhanced locomotor and stereotyped response to d-amphetamine (12 mg/kg; i.p.). Significant reductions in 5-HT concentrations (20-30%) were observed in the frontal cortex, amygdala, striatum, and hypothalamus as a result of MDA treatment. In addition, [3H] paroxetine binding was reduced by (40%) in the cortex of MDA treated rats indicating that the decrease in 5-HT concentrations were accompanied by a reduction in intact presynaptic 5-HT nerve terminals. Changes in behavioural performance in a novel "open field" environment and following d-amphetamine challenge might be considered as a behavioural model of serotonergic deficit induced by MDA. The findings of this study also suggest that MDA use may increase both the abuse potential, and the propensity to develop psychosis as a result of abusing other psychostimulants such as d-amphetamine.  相似文献   
2.
Allantoinase is a suspected dinuclear metalloenzyme that catalyzes the hydrolytic cleavage of the five-member ring of allantoin (5-ureidohydantoin) to form allantoic acid. Recombinant Escherichia coli allantoinase purified from overproducing cultures amended with 2.5 mM zinc, 1 mM cobalt, or 1 mM nickel ions was found to possess approximately 1.4 Zn, 0.0 Co, 0.0 Ni, and 0.4 Fe; 0.1 Zn, 1.0 Co, 0.0 Ni, and 0.2 Fe; and 0.0 Zn, 0.0 Co, 0.6 Ni, and 0.1 Fe per subunit, respectively, whereas protein obtained from nonamended cultures contains near stoichiometric levels of iron. We conclude that allantoinase is incompletely activated in the recombinant cells, perhaps due to an insufficiency of a needed accessory protein. Enzyme isolated from nonsupplemented cultures possesses very low activity (k(cat) = 34.7 min(-1)) compared to the zinc-, cobalt-, and nickel-containing forms of allantoinase (k(cat) values of 5,000 and 28,200 min(-1) and 200 min(-1), respectively). These rates and corresponding K(m) values (17.0, 19.5, and 80 mM, respectively) are significantly greater than those that have been reported previously. Absorbance spectroscopy of the cobalt species reveals a band centered at 570 nm consistent with five-coordinate geometry. Dithiothreitol is a competitive inhibitor of the enzyme, with significant K(i) differences for the zinc and cobalt species (237 and 795 micro M, respectively). Circular dichroism spectroscopy revealed that the zinc enzyme utilizes only the S isomer of allantoin, whereas the cobalt allantoinase prefers the S isomer, but also hydrolyzes the R isomer at about 1/10 the rate. This is the first report for metal content of allantoinase from any source.  相似文献   
3.
Nickel uptake and utilization by microorganisms   总被引:19,自引:0,他引:19  
Nickel is an essential nutrient for selected microorganisms where it participates in a variety of cellular processes. Many microbes are capable of sensing cellular nickel ion concentrations and taking up this nutrient via nickel-specific permeases or ATP-binding cassette-type transport systems. The metal ion is specifically incorporated into nickel-dependent enzymes, often via complex assembly processes requiring accessory proteins and additional non-protein components, in some cases accompanied by nucleotide triphosphate hydrolysis. To date, nine nickel-containing enzymes are known: urease, NiFe-hydrogenase, carbon monoxide dehydrogenase, acetyl-CoA decarbonylase/synthase, methyl coenzyme M reductase, certain superoxide dismutases, some glyoxylases, aci-reductone dioxygenase, and methylenediurease. Seven of these enzymes have been structurally characterized, revealing distinct metallocenter environments in each case.  相似文献   
4.
As F9 stem cells differentiate into parietal endoderm they form focal adhesion sites. There is a concomitant decrease in the level of phosphorylation of S785 in the cytoplasmic domain of the β1 integrin subunit. Previous transfection studies demonstrate that site-specific mutations at this residue, mimicking different phosphorylation states, can alter the subcellular localization of the subunit in differentiating F9 cells. We now extend these observations in an attempt to substantiate the function of β1 phosphorylation and determine how the phosphorylation levels are regulated. We show that treatment of parietal endoderm with okadaic acid induces an increase in β1 phosphorylation and selective loss of β1 from focal adhesion sites. Using a PCR approach, we identify two phosphatases expressed in parietal endoderm, including PP2A. Using a crosslinking approach, where antibodies are added to live cells, we show that the catalytic subunit of PP2A co-immunoprecipitates with β1. Immunocytochemistry shows PP2A colocalizing to focal adhesion sites with β1. In addition integrin-linked kinase (ILK) co-immunoprecipitates with β1 in parietal endoderm and localizes to focal adhesion sites. Okadaic acid treatment significantly decreases the level of ILK associated with β1. A possible role for regulated β1 phosphorylation in cell migration is discussed.  相似文献   
5.
6.
The first cell migration event in the mouse embryo is the movement of parietal endoderm cells from the surface of the inner cell mass facing the blastocoel cavity to line the inner surface of the trophectoderm. F9 embryoid bodies provide an in vitro model for this event. They have an inner core of undifferentiated stem cells surrounded by an outer visceral endoderm layer. When plated on a laminin coated substrate, visceral endoderm transitions to parietal endoderm and migrates onto the dish, away from the attached embryoid body. We now show that this outgrowth contains abundant focal complexes and focal adhesions, as well as lamellipodia and filopodia. Treatment with the ROCK inhibitor Y-27632 promotes a 2-fold increase in outgrowth, and a transition from focal adhesions and associated stress fibers, to focal complexes and a decrease in stress fibers. ROCK inhibition also leads to an increase in lamellipodia. Inhibition of RhoA by transfection of a vector encoding C3 transferase, direct administration of the C3 enzyme, or transfection of a vector encoding p190 Rho GTPase Activating Protein also promotes outgrowth and an apparent transition from focal adhesions to focal complexes. Parietal endoderm outgrowth generated using vinculin-deficient F9 stem cells migrates 2-fold further than wild type cultures, but this outgrowth retains the morphology of wild type parietal endoderm, including focal adhesions and stress fibers. Addition of Y-27632 to vinculin-null outgrowth cultures further stimulates migration an additional 2-fold, supporting the conclusion that Rho/ROCK and vinculin regulate parietal endoderm outgrowth by distinct pathways.  相似文献   
7.
Upon exposure to alkylating agents, Escherichia coli increases expression of aidB along with three genes (ada, alkA, and alkB) that encode DNA repair proteins. In order to begin to identify the role of AidB in the cell, the protein was purified to homogeneity, shown to possess stoichiometric amounts of flavin adenine dinucleotide (FAD), and confirmed to have low levels of isovaleryl-coenzyme A (CoA) dehydrogenase activity. A homology model of an AidB homodimer was constructed based on the structure of a four-domain acyl-CoA oxidase. The predicted structure revealed a positively charged groove connecting the two active sites and a second canyon of positive charges in the C-terminal domain, both of which could potentially bind DNA. Three approaches were used to confirm that AidB binds to double-stranded DNA. On the basis of its ability to bind DNA and its possession of a redox-active flavin, AidB is predicted to catalyze the direct repair of alkylated DNA.  相似文献   
8.
Four accessory proteins (UreD, UreE, UreF, and UreG) are typically required to form the nickel-containing active site in the urease apoprotein (UreABC). Among the accessory proteins, UreD and UreF have been elusive targets for biochemical and structural characterization because they are not overproduced as soluble proteins. Using the best-studied urease system, in which the Klebsiella aerogenes genes are expressed in Escherichia coli, a translational fusion of ureE and ureF was generated. The UreEF fusion protein was overproduced as a soluble protein with a convenient tag involving the His-rich region of UreE. The fusion protein was able to form a UreD(EF)G-UreABC complex and to activate urease in vivo, and it interacted with UreD-UreABC in vitro to form a UreD(EF)-UreABC complex. While the UreF portion of UreEF is fully functional, the fusion significantly affected the role of the UreE portion by interrupting its dimerization and altering its metal binding properties compared to those of the wild-type UreE. Analysis of a series of UreEF deletion mutants revealed that the C terminus of UreF is required to form the UreD(EF)G-UreABC complex, while the N terminus of UreF is essential for activation of urease.  相似文献   
9.
Salivary gland duct ligation is an alternative to gland excision for treating sialorrhea or reducing salivary gland size prior to tumor excision. Duct ligation also is used as an approach to study salivary gland aging, regeneration, radiotherapy, sialolithiasis and sialadenitis. Reports conflict about the contribution of each salivary cell population to gland size reduction after ductal ligation. Certain cell populations, especially acini, reportedly undergo atrophy, apoptosis and proliferation during reduction of gland size. Acini also have been reported to de-differentiate into ducts. These contradictory results have been attributed to different animal or salivary gland models, or to methods of ligation. We report here a bilateral double ligature technique for rabbit parotid glands with histologic observations at 1, 7, 14, 30, 60 days after ligation. A large battery of special stains and immunohistochemical procedures was employed to define the cell populations. Four stages with overlapping features were observed that led to progressive shutdown of gland activities: 1) marked atrophy of the acinar cells occurred by 14 days, 2) response to and removal of the secretory material trapped in the acinar and ductal lumens mainly between 30 and 60 days, 3) reduction in the number of parenchymal (mostly acinar) cells by apoptosis that occurred mainly between 14–30 days, and 4) maintenance of steady-state at 60 days with a low rate of fluid, protein, and glycoprotein secretion, which greatly decreased the number of leukocytes engaged in the removal of the luminal contents. The main post- ligation characteristics were dilation of ductal and acinar lumens, massive transient infiltration of mostly heterophils (rabbit polymorphonuclear leukocytes), acinar atrophy, and apoptosis of both acinar and ductal cells. Proliferation was uncommon except in the larger ducts. By 30 days, the distribution of myoepithelial cells had spread from exclusively investing the intercalated ducts pre-ligation to surrounding a majority of the residual duct-like structures, many of which clearly were atrophic acini. Thus, both atrophy and apoptosis made major contributions to the post-ligation reduction in gland size. Structures also occurred with both ductal and acinar markers that suggested acini differentiating into ducts. Overall, the reaction to duct ligation proceeded at a considerably slower pace in the rabbit parotid glands than has been reported for the salivary glands of the rat.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号