首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   5篇
  102篇
  2023年   1篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   4篇
  2015年   6篇
  2014年   5篇
  2013年   6篇
  2012年   3篇
  2011年   7篇
  2010年   3篇
  2009年   1篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   5篇
  2004年   2篇
  2002年   5篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   4篇
  1997年   2篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1989年   3篇
  1988年   1篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有102条查询结果,搜索用时 0 毫秒
1.
Seven barley(Hordeum vulgäre L.) cultivars tested varied greatly in their responses to root medium salinity (electrical conductivity of 3, 5, 10, 15 and 20 dS nr-1)-lant growth was relatively more adversely affected than seed germination. Dry/fresh mass ratio increased at higher salinity levels in all barley cultivars indicating reduced water uptake. Higher K/Na ratio in plant shoots compared to that in the root medium solution indicated selective uptake of K that seems to be among processes involved in tolerance of cultivars to salinity stress.  相似文献   
2.
Two hundred and three patients with single thyroid nodules were referred for radioactive scan of the thyroid. Solitary “cold” nodules were identified in 130 patients and 68 of these patients came to surgery. Of this group, 12 patients were found to have carcinoma. There was no obvious selection process which distinguished the 68 patients who underwent surgery from the 62 who did not. There is a significant risk of thyroid neoplasms occurring in patients with solitary “cold” nodules, and this is particularly true in patients under forty.  相似文献   
3.
Cadmium (Cd) is highly toxic metal for plant metabolic processes even in low concentration due to its longer half-life and non-biodegradable nature. The current study was designed to assess the bioremediation potential of a Cd-tolerant phytobeneficial bacterial strain Bacillus sp. SDA-4, isolated, characterized and identified from Chakera wastewater reservoir, Faisalabad, Pakistan, together with spinach (as a test plant) under different Cd regimes. Spinach plants were grown with and without Bacillus sp. SDA-4 inoculation in pots filled with 0, 5 or 10 mg kg−1 CdCl2-spiked soil. Without Bacillus sp. SDA-4 inoculation, spinach plants exhibited reduction in biomass accumulation, antioxidative enzymes and nutrient retention. However, plants inoculated with Bacillus sp. SDA-4 revealed significantly augmented growth, biomass accumulation and efficiency of antioxidative machinery with concomitant reduction in proline and MDA contents under Cd stress. Furthermore, application of Bacillus sp. SDA-4 assisted the Cd-stressed plants to sustain optimal levels of essential nutrients (N, P, K, Ca and Mg). It was inferred that the characterized Cd-tolerant PGPR strain, Bacillus sp. SDA-4 has a potential to reduce Cd uptake and lipid peroxidation which in turn maintained the optimum balance of nutrients and augmented the growth of Cd-stressed spinach. Analysis of bioconcentration factor (BCF) and translocation factor (TF) revealed that Bacillus sp. SDA-4 inoculation with spinach sequestered Cd in rhizospheric zone. Research outcomes are important for understanding morpho-physio-biochemical attributes of spinach-Bacillus sp. SDA-4 synergy which might provide efficient strategies to decrease Cd retention in edible plants and/or bioremediation of Cd polluted soil colloids.  相似文献   
4.
Phylogenetic relationships were determined for 76 partial P-element sequences from 14 species of the melanogaster species group within the Drosophila subgenus Sophophora. These results are examined in the context of the phylogeny of the species from which the sequences were isolated. Sequences from the P-element family fall into distinct subfamilies, or clades, which are often characteristic for particular species subgroups. When examined locally among closely related species, the evolution of P elements is characterized by vertical transmission, whereby the P-element phylogeny traces the species phylogeny. On a broader scale, however, the P-element phylogeny is not congruent with the species phylogeny. One feature of P-element evolution in the melanogaster group is the presence of more than one P-element subfamily, differing by as much as 36%, in the genomes of some species. Thus, P elements from several individual species are not monophyletic, and a likely explanation for the incongruence between P-element and species phylogenies is provided by the comparison of paralogous sequences. In certain instances, horizontal transfer seems to be a valid alternative explanation for lack of congruence between species and P-element phylogenies. The canonical P-element subfamily, which represents the active, autonomous transposable element, is restricted to D. melanogaster. Thus, its origin clearly lies outside of the melanogaster species group, consistent with the earlier conclusion of recent horizontal transfer.   相似文献   
5.
By in vitro translation of mRNA’s isolated from free and membrane-bound polysomes, direct evidence was obtained for the synthesis of two lysosomal hydrolases, β-glucuronidase of the rat preputial gland and cathespin D of mouse spleen, on polysomes bound to rough endoplasmic reticulum (ER) membranes. When the mRNA’s for these two proteins were translated in the presence of microsomal membranes, the in vitro synthesized polypeptides were cotranslationally glycosylated and transferred into the microsomal lumen. Polypeptides synthesized in the absence of microsomal membranes were approximately 2,000 daltons larger than the respective unglycosylated microsomal polypeptides found after short times of labeling in cultured rat liver cells treated with tunicamycin. This strongly suggests that nascent chains of the lysosomal enzymes bear transient amino terminal signals which determine synthesis on bound polysomes and are removed during the cotranslational insertion of the polypeptides into the ER membranes. In the line of cultured rat liver cells used for this work, newly synthesized lysosomal hydrolases showed a dual destination; approximately 60 percent of the microsomal polypeptides detected after short times of labeling were subsequently processed proteolytically to lower molecular weight forms characteristic of the mature enzymes. The remainder was secreted from the cells without further proteolytic processing. As previously observed by other investigations in cultured fibroblasts (A. Gonzalez-Noriega, J.H. Grubbs, V. Talkad, and W.S. Sly, 1980, J Cell Biol. 85: 839-852; A. Hasilik and E.F. Neufeld, 1980, J. Biol. Chem., 255:4937-4945.) the lysosomotropic amine chloroquine prevented the proteolytic maturation of newly synthesized hydrolases and enhanced their section. In addition, unglycosylated hydrolases synthesized in cells treated with tunicamycin were exclusively exported from the cells without undergoing proteolytic processing. These results support the notions that modified sugar residues serve as sorting out signals which address the hydrolases to their lysosomal destination and that final proteolytic cleavage of hydrolase precursors take place within lysosome itself. Structural differences in the carbohydrate chains of intracellular and secreted precursors of cathespin D were detected from their differential sensitivity to digestion with endoglycosidases H and D. These observations suggest that the hydrolases exported into the medium follow the normal secretory route and that some of their oligosaccharides are subject to modifications known to affect many secretory glycoproteins during their passage through the Golgi apparatus.  相似文献   
6.

Background  

Cellular responses to death-promoting stimuli typically proceed through a differentiated multistage process, involving a lag phase, extensive death, and potential adaptation. Deregulation of this chain of events is at the root of many diseases. Improper adaptation is particularly important because it allows cell sub-populations to survive even in the continuous presence of death conditions, which results, among others, in the eventual failure of many targeted anticancer therapies.  相似文献   
7.
The fibroblast growth factor receptor (FGFR) substrate 2 (FRS2) family proteins function as scaffolding adapters for receptor tyrosine kinases (RTKs). The FRS2α proteins interact with RTKs through the phosphotyrosine‐binding (PTB) domain and transfer signals from the activated receptors to downstream effector proteins. Here, we report the nuclear magnetic resonance structure of the FRS2α PTB domain bound to phosphorylated TrkB. The structure reveals that the FRS2α‐PTB domain is comprised of two distinct but adjacent pockets for its mutually exclusive interaction with either nonphosphorylated juxtamembrane region of the FGFR, or tyrosine phosphorylated peptides TrkA and TrkB. The new structural insights suggest rational design of selective small molecules through targeting of the two conjunct pockets in the FRS2α PTB domain. Proteins 2014; 82:1534–1541. © 2014 Wiley Periodicals, Inc.  相似文献   
8.
9.
10.
Suppressor of cytokine signaling (SOCS)-1 protein modulates signaling by IFN-gamma by binding to the autophosphorylation site of JAK2 and by targeting bound JAK2 to the proteosome for degradation. We have developed a small tyrosine kinase inhibitor peptide (Tkip) that is a SOCS-1 mimetic. Tkip is compared in this study with the kinase inhibitory region (KIR) of SOCS-1 for JAK2 recognition, inhibition of kinase activity, and regulation of IFN-gamma-induced biological activity. Tkip and a peptide corresponding to the KIR of SOCS-1, ((53))DTHFRTFRSHSDYRRI((68)) (SOCS1-KIR), both bound similarly to the autophosphorylation site of JAK2, JAK2(1001-1013). The peptides also bound to JAK2 peptide phosphorylated at Tyr(1007), pJAK2(1001-1013). Dose-response competitions suggest that Tkip and SOCS1-KIR similarly recognize the autophosphorylation site of JAK2, but probably not precisely the same way. Although Tkip inhibited JAK2 autophosphorylation as well as IFN-gamma-induced STAT1-alpha phosphorylation, SOCS1-KIR, like SOCS-1, did not inhibit JAK2 autophosphorylation but inhibited STAT1-alpha activation. Both Tkip and SOCS1-KIR inhibited IFN-gamma activation of Raw 264.7 murine macrophages and inhibited Ag-specific splenocyte proliferation. The fact that SOCS1-KIR binds to pJAK2(1001-1013) suggests that the JAK2 peptide could function as an antagonist of SOCS-1. Thus, pJAK2(1001-1013) enhanced suboptimal IFN-gamma activity, blocked SOCS-1-induced inhibition of STAT3 phosphorylation in IL-6-treated cells, enhanced IFN-gamma activation site promoter activity, and enhanced Ag-specific proliferation. Furthermore, SOCS-1 competed with SOCS1-KIR for pJAK2(1001-1013). Thus, the KIR region of SOCS-1 binds directly to the autophosphorylation site of JAK2 and a peptide corresponding to this site can function as an antagonist of SOCS-1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号