首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10001篇
  免费   590篇
  国内免费   36篇
  10627篇
  2024年   30篇
  2023年   151篇
  2022年   425篇
  2021年   657篇
  2020年   293篇
  2019年   347篇
  2018年   502篇
  2017年   322篇
  2016年   469篇
  2015年   631篇
  2014年   641篇
  2013年   751篇
  2012年   753篇
  2011年   693篇
  2010年   433篇
  2009年   369篇
  2008年   407篇
  2007年   404篇
  2006年   311篇
  2005年   254篇
  2004年   221篇
  2003年   177篇
  2002年   164篇
  2001年   98篇
  2000年   76篇
  1999年   62篇
  1998年   48篇
  1997年   40篇
  1996年   36篇
  1995年   37篇
  1994年   30篇
  1993年   31篇
  1992年   62篇
  1991年   43篇
  1990年   51篇
  1989年   52篇
  1988年   39篇
  1987年   35篇
  1986年   36篇
  1985年   32篇
  1984年   40篇
  1983年   35篇
  1982年   37篇
  1981年   37篇
  1980年   42篇
  1979年   19篇
  1978年   29篇
  1977年   19篇
  1974年   25篇
  1973年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
Abstract: Phosphorylation of G protein-coupled receptors is considered an important step during their desensitization. In SK-N-BE cells, recently presented as a pertinent model for the studies of the human δ-opioid receptor, pretreatment with the opioid agonist etorphine increased time-dependently the rate of phosphorylation of a 51-kDa membrane protein. Immunological characterization of this protein with an antibody, raised against the amino-terminal region of the cloned human δ-opioid receptor, revealed that it corresponded to the δ-opioid receptor. During prolonged treatment with etorphine, phosphorylation increased as early as 15 min to reach a maximum within 1 h. Phosphorylation and desensitization of adenylyl cyclase inhibition paralleled closely and okadaic acid inhibited the resensitization, a result strongly suggesting that phosphorylation of the δ-opioid receptor plays a prominent role in its rapid desensitization. The increase in phosphorylation of the δ-opioid receptor, as well as its desensitization, was not affected by H7, an inhibitor of protein kinase A and protein kinase C, but was drastically reduced by heparin or Zn2+, known to act as G protein-coupled receptor kinase (GRK) inhibitors. These results are the first to show, on endogenously expressed human δ-opioid receptor, that a close link exists between receptor phosphorylation and agonist-promoted desensitization and that desensitization involves a GRK.  相似文献   
3.
On Branching Processes and the Early Stages of the Spread of an Epidemic   总被引:1,自引:0,他引:1  
Ahmed E 《生物数学学报》1998,13(2):129-131
Branchingprocess(BP)isusedtomodeltheearlystagesofthespreadofasexuallytransmitteddisease.TheearlystagesofAIDSspreadwhichistransmittedbothhomosexuallyandheterosexuallyarestudiedasaBP.  相似文献   
4.
5.
6.
Some P-450 systems, notably aromatase and 14-demethylase catalyse not only the hydroxylate reaction but also the oxidation of an alcohol into a carbonyl compound as well as a C---C bond cleavage process. All these reactions occur at the same active site. A somewhat analogous situation is noted with 17-hydroxylase-17,20-lyase that participates in hydroxylation as well as C---C bond cleavage process. The C---C bond cleavage reactions catalysed by the above enzymes conform to the general equation:

It is argued that all three types of reaction catalyzed by these enzymes may be viewed as variations on a common theme. In P-450 dependent hydroxylation the initially formed FeIII---O---O. species is converted into FeIII---O---OH and the heterolysis of the oxygen—oxygen bond of the latter then gives the oxo-derivative for which a number of canonical structures are possible; for example FeV = O ↔ (+.)FeIV = O ↔ FeIV---O.. One of these, FeIV---O. behaves like an alkoxyl radical and participates in hydrogen abstraction from C---H bond to produce FeIV---OH and carbon radical. The latter is then quenched by the delivery of hydroxyl radical from FeIV---OH. The latter species may thus be regarded as a carrier of hydroxyl radical. We have proposed that the C---C bond cleavage reaction occurs through the participation of the FeIII---O---OH species that is trapped by the electrophilic property of the carbonyl compound giving a peroxide adduct that fragments to produce an acyl—carbon cleavage. Scientific developments leading up to this conclusion are considered. In the first author's views,

“The study of mechanisms is not a scientific but a cultural activity. Mechanisms do not aim at an absolute truth but are intended to be a “running” commentary on the status of knowledge in a field. As the structural knowledge in a field advances Mechanisms evolve to take note of the new findings. Just as a constructive “running” commentary provides the stimulus for higher standards of performance, so Mechanisms call for better and firmer structural information from their practitioners”.  相似文献   

7.
Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults and there are few effective treatments. GBMs contain cells with molecular and cellular characteristics of neural stem cells that drive tumour growth. Here we compare responses of human glioblastoma-derived neural stem (GNS) cells and genetically normal neural stem (NS) cells to a panel of 160 small molecule kinase inhibitors. We used live-cell imaging and high content image analysis tools and identified JNJ-10198409 (J101) as an agent that induces mitotic arrest at prometaphase in GNS cells but not NS cells. Antibody microarrays and kinase profiling suggested that J101 responses are triggered by suppression of the active phosphorylated form of polo-like kinase 1 (Plk1) (phospho T210), with resultant spindle defects and arrest at prometaphase. We found that potent and specific Plk1 inhibitors already in clinical development (BI 2536, BI 6727 and GSK 461364) phenocopied J101 and were selective against GNS cells. Using a porcine brain endothelial cell blood-brain barrier model we also observed that these compounds exhibited greater blood-brain barrier permeability in vitro than J101. Our analysis of mouse mutant NS cells (INK4a/ARF−/−, or p53−/−), as well as the acute genetic deletion of p53 from a conditional p53 floxed NS cell line, suggests that the sensitivity of GNS cells to BI 2536 or J101 may be explained by the lack of a p53-mediated compensatory pathway. Together these data indicate that GBM stem cells are acutely susceptible to proliferative disruption by Plk1 inhibitors and that such agents may have immediate therapeutic value.  相似文献   
8.
Summary Production of cephamycin and clavulanic acid by Streptomyces clavuligerus is controlled by the phosphate concentration. Phosphate represses the biosynthesis of cephamycin synthetase, expandase and clavulanic acid synthetase. In the presence of 2 mM phosphate, the specific activities of expandase, cephamycin synthetase and clavulanic acid synthetase were higher than in the presence of 75 mM phosphate. The specific activity of cephamycin synthetase is maximal with an initial phosphate concentration of 10 mM, whereas the specific activity of expandase is maximal with 1 mM phosphate. A correlation between cephamycin synthetase specific activity and expandase specific activity was established at phosphate concentrations higher than 10 mM. This shows that the expandase is an important enzyme in the mechanism by which the phosphate concentration affects the biosynthesis of cephamycin.  相似文献   
9.
The Rmcf gene restricts the replication of recombinant murine mink cell focus-inducing (MCF) viruses in cell cultures derived from mice carrying the resistance allele (Rmcfr) and may play a role in resistance to retrovirus-induced leukemias in vivo. We have characterized the endogenous gp70 expressed by Rmcfr and Rmcfs mice with a panel of type-specific monoclonal antibodies which discriminate xenotropic and MCF gp70. Embryo and tail skin cultures derived from Rmcfr mice (DBA/2 and CBA/N) expressed gp70 bearing a determinant unique to MCF viruses, whereas cultures from Rmcfs mice expressed either no detectable gp70 (NFS/N and IRW) or a gp70 serologically related to a subgroup of xenotropic viruses (C57BL/6, CBA/J, and A/WySn). Studies of progeny embryos derived from a (C57BL/6 X DBA/2) X C57BL/6 backcross established that the Rmcf resistance allele was linked to the expression of the MCF gp70 and that the gene encoding the xenotropic gp70 expressed by C57BL/6 Rmcfs mice was allelic with the MCF gp70 from Rmcfr mice. These data indicate that the Rmcf locus contains an endogenous gp70 gene having two allelic forms, one of which inhibits exogenous MCF infection in vitro by a mechanism of viral interference.  相似文献   
10.
Phenol, p-cresol, and volatile fatty acids (VFA; acetic, propionic, isobutyric, butyric, isovaleric, and valeric acids) were used as odor indicators of swine waste. Aeration of the waste allowed the indigenous microorganisms to grow and degrade these malodorous substances. The time required for degradation of these substances varied according to the waste used, and it was not necessarily related to their concentrations. Using a minimal medium which contained one of the malodorous compounds as sole carbon source, we have selected from swine waste microorganisms that can grow in the medium. The majority of these microorganisms were able to degrade the same substrate when inoculated in sterilized swine waste but with an efficiency varying from one strain to the other. None of these strains was able to degrade all malodorous substances studied. Within 6 days of incubation these selected strains degraded the following: Acinetobacter calcoaceticus, phenol and all VFA; Alcaligenes faecalis, p-cresol and all VFA; Corynebacterium glutamicum and Micrococcus sp., phenol, p-cresol, and acetic and propionic acids; Arthrobacter flavescens, all VFA. On a laboratory scale, the massive inoculation of swine waste with C. glutamicum or Micrococcus sp. accelerated degradation of the malodorous substances. However, this effect was not observed with all of the various swine wastes tested. These results suggest that an efficient deodorization process of various swine wastes could be developed at the farm level based on the aerobic indigenous microflora of each waste.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号