首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   8篇
  2021年   1篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   5篇
  2011年   3篇
  2010年   5篇
  2009年   4篇
  2008年   1篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   4篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1994年   2篇
  1992年   2篇
  1991年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1971年   1篇
排序方式: 共有65条查询结果,搜索用时 31 毫秒
1.
Sodium butyrate, which blocks the cell cycle of many cell types in the G1 phase, strongly inhibits the synthesis of the transformation related, 53 kDa protein in 3T6 fibroblasts but much less so in SV 40 transformed mouse cells. By several criteria, this effect of the fatty acid appears to be indirect; p 53 synthesis takes place several hours after the butyrate-sensitive step in G1. The results are discussed in the light of a putative role of p 53 in growth control.  相似文献   
2.
Protein phosphatase 2A (PP2A) holoenzymes consist of a catalytic C subunit, a scaffolding A subunit, and one of several regulatory B subunits that recruit the AC dimer to substrates. PP2A is required for chromosome segregation, but PP2A's substrates in this process remain unknown. To identify PP2A substrates, we carried out a two-hybrid screen with the regulatory B/PR55 subunit. We isolated a human homolog of C. elegans HCP6, a protein distantly related to the condensin subunit hCAP-D2, and we named this homolog hHCP-6. Both C. elegans HCP-6 and condensin are required for chromosome organization and segregation. HCP-6 binding partners are unknown, whereas condensin is composed of the structural maintenance of chromosomes proteins SMC2 and SMC4 and of three non-SMC subunits. Here we show that hHCP-6 becomes phosphorylated during mitosis and that its dephosphorylation by PP2A in vitro depends on B/PR55, suggesting that hHCP-6 is a B/PR55-specific substrate of PP2A. Unlike condensin, hHCP-6 is localized in the nucleus in interphase, but similar to condensin, hHCP-6 associates with chromosomes during mitosis. hHCP-6 is part of a complex that contains SMC2, SMC4, kleisin-beta, and the previously uncharacterized HEAT repeat protein FLJ20311. hHCP-6 is therefore part of a condensin-related complex that associates with chromosomes in mitosis and may be regulated by PP2A.  相似文献   
3.
The continuous replacement of teeth throughout their lifetime is a common characteristic of most chondrichthyans. This process was already present in the earliest representatives of the group. It has been well established that different species of extant sharks show rapid tooth replacement rates; however, some authors have suggested that in early chondrichthyans this rate might have been much slower. Here we present a qualitative approach to analyse tooth replacement rates in the Early Devonian shark Leonodus carlsi , the earliest tooth-bearing shark known to date. For this, we have examined 1,103 isolated teeth from Celtiberia, Spain. Our study provides strong evidences of an extremely slow dental replacement in this primitive chondrichthyan based on three independents analyses: (1) statistical analysis of the wear degree, demonstrating that teeth remain functional for a long period of time; (2) analysis of both the histological and the morphological features of the teeth cusps suggests that this chondrichthyan used a maturation process that optimizes its function, thus worn teeth show an efficient working shape that implies their teeth remained functional for a long time after being modelled by use; and (3) estimations of size increments between teeth (Δs) of the same dental family for some recent sharks whose rates of replacement were known prove that Δs is inversely proportional to the rate of replacement ( R 2 = 0.8327). The estimated values of tooth replacement rates obtained from Δs for L. carlsi and for some Late Devonian cladoselachian sharks are significatively slower than those observed in current sharks.  相似文献   
4.
Protein phosphatase 2A (PP2A) is a conserved essential enzyme that is implicated as a tumor suppressor based on its central role in phosphorylation-dependent signaling pathways. Protein phosphatase methyl esterase (PME-1) catalyzes specifically the demethylation of the C-terminal Leu309 residue of PP2A catalytic subunit (PP2Ac). It has been shown that PME-1 affects the activity of PP2A by demethylating PP2Ac, but also by directly binding to the phosphatase active site, suggesting loss of PME-1 in cells would enhance PP2A activity. However, here we show that PME-1 knockout mouse embryonic fibroblasts (MEFs) exhibit lower PP2A activity than wild type MEFs. Loss of PME-1 enhanced poly-ubiquitination of PP2Ac and shortened the half-life of PP2Ac protein resulting in reduced PP2Ac levels. Chemical inhibition of PME-1 and rescue experiments with wild type and mutated PME-1 revealed methyl-esterase activity was necessary to maintain PP2Ac protein levels. Our data demonstrate that PME-1 methyl-esterase activity protects PP2Ac from ubiquitin/proteasome degradation.  相似文献   
5.
Boron (B) is an essential nutrient for N2‐fixing legume–rhizobia symbioses, and the capacity of borate ions to bind and stabilize biomolecules is the basis of any B function. We used a borate‐binding‐specific resin and immunostaining techniques to identify B ligands important for the development of Pisum sativum–Rhizobium leguminosarum 3841 symbiotic nodules. arabinogalactan–extensin (AGPE), recognized by MAC 265 antibody, appeared heavily bound to the resin in extracts derived from B‐sufficient, but not from B‐deficient nodules. MAC 265 stained the infection threads and the extracellular matrix of cortical cells involved in the oxygen diffusion barrier. In B‐deprived nodules, immunolocalization of MAC 265 antigens was significantly reduced. Leghaemoglobin (Lb) concentration largely decreased in B‐deficient nodules. The absence of MAC 203 antigens in B‐deficient nodules suggests a high internal oxygen concentration, as this antibody detects an epitope on the lipopolysaccharide (LPS) of bacteroids typically expressed in micro‐aerobically grown R. leguminosarum 3841. However, B‐deprived nodules did not accumulate oxidized lipids and proteins, and revealed a decrease in the activity of the major antioxidant enzyme ascorbate peroxidase (APX). Therefore, B deficiency reduced the stability of nodule macromolecules important for rhizobial infection, and for regulation of oxygen concentration, resulting in non‐functional nodules, but did not appear to induce oxidative damage in low‐B nodules.  相似文献   
6.
1. The freshwater calanoid copepod Boeckella gibbosa is typical of high elevation lakes and ponds in Patagonia (Argentina). Previous studies have shown that this species is highly tolerant to short-term exposure to natural and artificial UVB radiation, and that its tolerance is due to photoreactivation by longer wavelength radiation. In this study, we investigate the potential sublethal effects of solar radiation after prolonged exposure.
2. We incubated B. gibbosa at 1 m depth in oligotrophic Lake Toncek for 24 days. The incubation chambers were 1.2 l acrylic cylinders covered with appropriate filters in order to obtain three radiation treatments: visible radiation only, visible radiation + UVA and visible radiation + UVA + UVB.
3. The three treatments did not differ significantly in variables considered as indicators of survival (number of individuals), reproduction (proportion of ovigerous females, clutch size) and development (instar composition). Although resistance to solar UVB radiation is certainly a requisite to live in transparent high elevation habitats, the fact of being effectively exposed to natural levels of UVB radiation does not seem to have measurable consequences on an already adapted species, such as B. gibbosa  相似文献   
7.
Carboxymethylation and phosphorylation of protein phosphatase 2A (PP2A) catalytic C subunit are evolutionary conserved mechanisms that critically control PP2A holoenzyme assembly and substrate specificity. Down-regulation of PP2A methylation and PP2A enzymes containing the B alpha regulatory subunit occur in Alzheimer's disease. In this study, we show that expressed wild-type and methylation- (L309 Delta) and phosphorylation- (T304D, T304A, Y307F, and Y307E) site mutants of PP2A C subunit differentially bind to B, B', and B'-type regulatory subunits in NIH 3T3 fibroblasts and neuro-2a (N2a) neuroblastoma cells. They also display distinct binding affinity for microtubules (MTs). Relative to controls, expression of the wild-type, T304A and Y307F C subunits in N2a cells promotes the accumulation of acetylated and detyrosinated MTs. However, expression of the Y307E, L309 Delta, and T304D mutants, which are impaired in their ability to associate with the B alpha subunit, induces their loss. Silencing of B alpha subunit in N2a and NIH 3T3 cells is sufficient to induce a similar breakdown of acetylated and detyrosinated MTs. It also confers increased sensitivity to nocodazole-induced MT depolymerization. Our findings suggest that changes in intracellular PP2A subunit composition can modulate MT dynamics. They support the hypothesis that reduced amounts of neuronal B alpha-containing PP2A heterotrimers contribute to MT destabilization in Alzheimer's disease.  相似文献   
8.
9.
The Gram-negative type II secretion (T2S) system is a multiprotein complex mediating the release of virulence factors from a number of pathogens. While an understanding of the function of T2S components is emerging, little is known about what identifies substrates for export. To investigate T2S substrate recognition, we compared mutations affecting the secretion of two highly homologous substrates: heat-labile enterotoxin (LT) from enterotoxigenic Escherichia coli (ETEC) and cholera toxin (CT) from Vibrio cholerae. Each toxin consists of one enzymatic A subunit and a ring of five B subunits mediating the toxin''s secretion. Here, we report two mutations in LT''s B subunit (LTB) that reduce its secretion from ETEC without global effects on the toxin. The Q3K mutation reduced levels of secreted LT by half, and as with CT (T. D. Connell, D. J. Metzger, M. Wang, M. G. Jobling, and R. K. Holmes, Infect. Immun. 63:4091-4098, 1995), the E11K mutation impaired LT secretion. Results in vitro and in vivo show that these mutants are not degraded more readily than wild-type LT. The Q3K mutation did not significantly affect CT B subunit (CTB) secretion from V. cholerae, and the E11A mutation altered LT and CTB secretion to various extents, indicating that these toxins are identified as secretion substrates in different ways. The levels of mutant LTB expressed in V. cholerae were low or undetectable, but each CTB mutant expressed and secreted at wild-type levels in ETEC. Therefore, ETEC''s T2S system seems to accommodate mutations in CTB that impair the secretion of LTB. Our results highlight the exquisitely fine-tuned relationship between T2S substrates and their coordinate secretion machineries in different bacterial species.Gram-negative bacteria have evolved a number of methods to secrete proteins into the extracellular milieu, with at least six specific secretion systems currently described (14, 30). Type II secretion (T2S), or the main terminal branch of the general secretory pathway, is a feature of a number of proteobacteria and has been shown to be required for pathogenesis and maintenance of environmental niches in a large number of species (5). The T2S system is a multiprotein complex of 12 to 15 components that spans the inner and outer membranes, allowing for the controlled release of certain folded proteins that have been directed to the periplasm through the Sec or Tat machinery (21). Aside from providing a means of exporting freely released virulence factors from plant, animal, and human pathogens (5), the T2S system has been shown to export surface-associated virulence factors (18), fimbrial components (46), outer membrane cytochromes (36), and a surfactant required for sliding motility in Legionella pneumophila (39), among other substrates.While an increasing number of studies have focused on understanding the structure and function of the components of the T2S system itself, little is known about what identifies a periplasmic protein as a substrate for secretion (21, 32). Because proteins secreted from the same bacterial species need not share any obvious structural homology, it is not even clear how much of a T2S substrate interacts with the secretion machinery (32). Analysis of two similar substrates that can each be secreted by the T2S systems of two distinct species would provide information about species-specific identification of T2S substrates and, by extension, the nature of the “secretion motif” identifying those substrates. Heat-labile enterotoxin (LT) from enterotoxigenic Escherichia coli (ETEC) and cholera toxin (CT) from Vibrio cholerae represent one such pair of substrates.ETEC and V. cholerae are enteric pathogens causing significant morbidity and mortality worldwide (33). The causative agents of traveler''s diarrhea and cholera, respectively, these two pathogens share a number of similarities, including the nature of their disease symptoms (38). Each pathogen secretes an AB5 toxin important for colonization and the induction of water and electrolyte efflux from intestinal epithelial cells (1, 29). These toxins, LT and CT, are both encoded by two-gene operons. After sec-dependent transport to the periplasm, holotoxin formation occurs spontaneously (13), with one catalytic A subunit (LTA or CTA) assembling with five B subunits (LTB or CTB), which are responsible for the binding properties of the toxins. Export of fully folded and assembled LT or CT is then accomplished by the T2S system (34, 40). In ETEC, this system is encoded by gspC to -M (40), while in V. cholerae, these genes are found in the eps operon (34).LT and CT are very similar in structure, sharing approximately 80% sequence homology and 83% identity in the mature B subunit (16, 24). ETEC is thought to have acquired the genes for CT through horizontal transfer, with the toxins evolving over time to possess slight differences (45). As such, these toxins share the same primary host receptor, the monosialoganglioside GM1, and catalyze the same ADP-ribosylation reaction within host cells (38). However, LT is able to bind other host sphingolipids in addition to GM1 and to interact with sugar residues from the A-type blood antigen, which CT cannot bind (16, 41). Both LT and CT are able to associate with sugar residues in lipopolysaccharide (LPS) on the surface of E. coli cells (17). Binding to each of these substrates can be impaired by point mutation (26, 43).In this study, we report point mutations impairing the release of LT from ETEC and CT from V. cholerae. We analyzed the specificity of the defects in substrate recognition by comparing the effects of substituting charged and neutral residues in key regions of LTB and CTB. To confirm that the identified mutations resulted specifically in a secretion defect, we tested the effect of the mutations on (i) ligand binding by each toxin, (ii) toxin stability, and (iii) formation of secretion-competent B-subunit pentamers. By introducing comparable mutations into both toxins, including one previously reported to impair the secretion of CT (6), and exchanging toxin substrates between the two species, we have revealed species-dependent differences in T2S substrate recognition. Although wild-type LT and CT can be heterologously expressed and secreted from V. cholerae and ETEC, respectively, the substrate residues identified by the secretion machinery in each species are distinct. Together, our results demonstrate that highly homologous T2S substrates are recognized in different ways when secreted by two distinct systems.  相似文献   
10.
Few studies have found strong evidence to suggest that ecotones promote species richness and diversity. In this study we examine the responses of a high‐Andean bird community to changes in vegetation and topographical characteristics across an Andean tree‐line ecotone and adjacent cloud forest and puna grassland vegetation in southern Peru. Over a 6‐month period, birds and vegetation were surveyed using a 100 m fixed‐width Distance Sampling point count method. Vegetation analyses revealed that the tree‐line ecotone represented a distinctive high‐Andean vegetation community that was easily differentiated from the adjacent cloud forest and puna grassland based on changes in tree‐size characteristics and vegetation cover. Bird community composition was strongly seasonal and influenced by a pool of bird species from a wider elevational gradient. There were also clear differences in bird community measures between tree‐line vegetation, cloud forest and puna grassland with species turnover (β‐diversity) most pronounced at the tree‐line. Canonical Correspondence Analysis revealed that the majority of the 81 bird species were associated with tree‐line vegetation. Categorizing patterns of relative abundance of the 42 most common species revealed that the tree‐line ecotone was composed primarily of cloud forest specialists and habitat generalists, with very few species from the puna grassland. Only two species, Thlypopsis ruficeps and Anairetes parulus, both widespread Andean species more typical of montane woodland vegetation edges, were categorized as ecotone specialists. However, our findings were influenced by significant differences in species detectability between all three vegetation communities. Our study highlights the importance of examining ecotones at an appropriate spatial and temporal scale. Selecting a suitable distance between sampling points based on the detection probabilities of the target bird species is essential to obtain an unbiased picture of how ecotones influence avian richness and diversity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号