首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2013年   1篇
  2010年   1篇
  2008年   1篇
  2004年   2篇
  2001年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
Classical drug therapies against prion diseases have encountered serious difficulties. It has become urgent to develop radically different therapeutic strategies. Previously, we showed that VSV-G pseudotyped FIV derived vectors carrying dominant negative mutants of the PrP gene are efficient to inhibit prion replication in chronically prion-infected cells. Besides, they can transduce neurons and cells of the lymphoreticular system, highlighting their potential use in gene therapy approaches. Here, we used lentiviral gene transfer to deliver PrPQ167R virions possessing anti-prion properties to analyse their efficiency in vivo. Since treatment for prion diseases is initiated belatedly in human patients, we focused on the development of a curative therapeutic protocol targeting the late stage of the disease, either at 35 or 105 days post-infection (d.p.i.) with prions. We observed a prolongation in the lifespan of the treated mice that prompted us to develop a system of cannula implantation into the brain of prion-infected mice. Chronic injections of PrPQ167R virions were done at 80 and 95 d.p.i. After only two injections, survival of the treated mice was extended by 30 days (20%), accompanied by substantial improvement in behaviour. This delay was correlated with: (i) a strong reduction of spongiosis in the ipsilateral side of the brain by comparison with the contralateral side; and (ii) a remarkable decrease in astrocytic gliosis in the whole brain. These results suggest that chronic injections of dominant negative lentiviral vectors into the brain, may be a promising approach for a curative treatment of prion diseases.  相似文献   
2.
The use of anti-PrP antibodies represents one of the most promising strategies for the treatment of prion diseases. In the present study, we screened various anti-PrP antibodies with the aim of identifying those that would block PrP(Sc) replication in prion-infected cell culture. Two antibodies, SAF34 recognizing the flexible octarepeats region on HuPrP protein, and SAF61 directed against PrP amino acid residues (144-152), not only inhibited PrP(Sc) formation in prion-infected neuroblastoma cells but also decreased the PrP(C) levels in non-infected N2a cells. In addition, treatment with both SAF34 and SAF61 antibodies decreased PrP(C) and PrP(Sc) levels in the cells synergistically. In the presence of both antibodies, our results showed that the mode of action which leads to the disappearance of PrP(Sc) in cells is directly coupled to PrP(C) degradation by reducing the half-life of the PrP(C) protein.  相似文献   
3.
Transmissible spongiform encephalopathies are characterized by the accumulation in brain tissues of an abnormal isoform of the prion protein named PrPsc, which is the only direct marker known for transmissible spongiform encephalopathies. Here we show that PrPsc can be specifically immunoprecipitated by using several monoclonal antibodies (mAbs) of various specificities independently of the properties of their binding site (paratope). These results strongly suggest that a significant proportion of mAbs can interact with PrPsc aggregates through nonspecific paratope-independent interactions allowing selective immunoprecipitation of PrPsc when these mAbs are immobilized on a polydisperse solid phase like microbeads.  相似文献   
4.

Background  

Transmissible spongiform encephalopathies are fatal neurodegenerative disease occurring in animals and humans for which no ante-mortem diagnostic test in biological fluids is available. In such pathologies, detection of the pathological form of the prion protein (i.e., the causative factor) in blood is difficult and therefore identification of new biomarkers implicated in the pathway of prion infection is relevant.  相似文献   
5.
Prion diseases are irreversible progressive neurodegenerative diseases, leading to severe incapacity and death. They are characterized in the brain by prion amyloid deposits, vacuolisation, astrocytosis, neuronal degeneration, and by cognitive, behavioural and physical impairments. There is no treatment for these disorders and stem cell therapy therefore represents an interesting new approach. Gains could not only result from the cell transplantation, but also from the stimulation of endogenous neural stem cells (NSC) or by the combination of both approaches. However, the development of such strategies requires a detailed knowledge of the pathology, particularly concerning the status of the adult neurogenesis and endogenous NSC during the development of the disease. During the past decade, several studies have consistently shown that NSC reside in the adult mammalian central nervous system (CNS) and that adult neurogenesis occurs throughout the adulthood in the subventricular zone of the lateral ventricle or the Dentate Gyrus of the hippocampus. Adult NSC are believed to constitute a reservoir for neuronal replacement during normal cell turnover or after brain injury. However, the activation of this system does not fully compensate the neuronal loss that occurs during neurodegenerative diseases and could even contribute to the disease progression. We investigated here the status of these cells during the development of prion disorders. We were able to show that NSC accumulate and replicate prions. Importantly, this resulted in the alteration of their neuronal fate which then represents a new pathologic event that might underlie the rapid progression of the disease.  相似文献   
6.
Differential distribution and phosphorylation of tau proteins were studied in developing kitten brain by using several antibodies, and was compared to phosphorylation in Alzheimer's disease. Several antibodies demonstrated the presence of phosphorylated tau proteins during kitten brain development and identified pathological structures in human brain tissue. Antibody AD2, recognized tau in kittens and adult cats, but reacted in Alzheimer's tissue only with a pathological tau form. Antibody AT8 was prominent in developing kitten neurons and was found in axons and dendrites. After the first postnatal month this phosphorylation type disappeared from axons. Furthermore, dephosphorylation of kitten tau with alkaline phosphatase abolished immunoreactivity of AT8, but not that of AD2, pointing to a protection of the AD2 epitope in cats. Tau proteins during early cat brain development are phosphorylated at several sites that are also phosphorylated in paired helical filaments during Alzheimer's disease. In either event, phosphorylation of tau may play a crucial role to modulate microtubule dynamics, contributing to increased microtubule instability and promoting growth of processes during neuronal development or changing dynamic properties of the cytoskeleton and contributing to the formation of pathological structures in neurodegenerative diseases.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号