首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1252篇
  免费   24篇
  1276篇
  2024年   9篇
  2023年   13篇
  2022年   18篇
  2021年   44篇
  2020年   18篇
  2019年   37篇
  2018年   45篇
  2017年   16篇
  2016年   44篇
  2015年   72篇
  2014年   68篇
  2013年   77篇
  2012年   83篇
  2011年   91篇
  2010年   45篇
  2009年   49篇
  2008年   67篇
  2007年   68篇
  2006年   58篇
  2005年   31篇
  2004年   32篇
  2003年   36篇
  2002年   26篇
  2001年   24篇
  2000年   24篇
  1999年   23篇
  1998年   8篇
  1997年   10篇
  1996年   5篇
  1995年   5篇
  1994年   3篇
  1992年   12篇
  1991年   9篇
  1990年   13篇
  1989年   5篇
  1988年   15篇
  1987年   7篇
  1986年   7篇
  1985年   3篇
  1984年   9篇
  1982年   8篇
  1981年   2篇
  1980年   6篇
  1979年   4篇
  1978年   7篇
  1977年   5篇
  1976年   2篇
  1974年   3篇
  1969年   2篇
  1968年   2篇
排序方式: 共有1276条查询结果,搜索用时 15 毫秒
1.
A new galactose-specific lectin was purified from seeds of a Caesalpinoideae plant, Bauhinia variegata, by affinity chromatography on lactose-agarose. Protein extracts haemagglutinated rabbit and human erythrocytes (native and treated with proteolytic enzymes), showing preference for rabbit blood treated with papain and trypsin. Among various carbohydrates tested, the lectin was best inhibited by D-galactose and its derivatives, especially lactose. SDS-PAGE showed that the lectin, named BVL, has a pattern similar to other lectins isolated from the same genus, Bauhinia purpurea agglutinin (BPA). The molecular mass of BVL subunit is 32 871 Da, determined by MALDI-TOF spectrometry. DNA extracted from B. variegata young leaves and primers designed according to the B. purpurea lectin were used to generate specific fragments which were cloned and sequenced, revealing two distinct isoforms. The bvl gene sequence comprised an open reading frame of 876 base pairs which encodes a protein of 291 amino acids. The protein carried a putative signal peptide. The mature protein was predicted to have 263 amino acid residues and 28 963 Da in size.  相似文献   
2.
3.
    
Three types of hydrogenases have been isolated from the sulfate-reducing bacteria of the genus Desulfobibrio. They differ in their subunit and metal compositions, physico-chemical characteristics, amino acid sequences, immunological ractivities, gene structures and their catalytic properties. Broadly, the hydrogenases can be considered as ‘iron only’ hydrogenases and nickel-containing hydrogenases. The iron-sulfur-containg hydrogenase ([Fe] hydrogenase) contains two ferredoxin-type (4Fe-4S) clusters and an atypical iron-sulfur center belived to be involved in the activation of H2. The [Fe] hydrogenase has the highest specific activity in the evolution and consumption of hydrogen and in the proton-deuterium exchange reaction and this enzyme is the most sensitive to CO and NO2. It is not present in all species of DesulfovibrioThe nickel-(iron-sulfur)-containing hydrogenases ([NiFe] hydrogenase) posses two (4Fe-4S) centers and one (3Fe-xS) cluster in addition to nickel and have been found in all species of Desulfovibrio so far investigated. The redox active nickel is ligated by at least two cysteinyl thiolate residues and the [NiFe] hydrogenases are particularly resistant to inhibitors such as CO and NO2. The genes encoding the large and small subunits of a periplasmic and a membrane-bound species of the [NiFe] hydrogenase have been cloned in Eschierichia (E.) coli and sequenced. Their derived amino acid sequences exhibit a high degree of homology (70%); however, they show no obvious metal-binding sites or homology with the derived amino acid sequence of the [Fe] hydrogenase. The third class is represented by the nickel-iron-sulfur)-selenium-containing hydrogenases ([NiFe-Se] hydrohenases) which contain nickel and selenium in equimoleular amounts plus (4Fe-4S) centers and are only found in some species of Desulfovibrio. The genes encoding the large and small subunits of the periplasmic hydrogenase from Desulfrovibio (D) baculatus (DSM 1743) (for abbrviations see appendix) have been cloned  相似文献   
4.
A new experimental model, the latissimus dorsi flap of the rabbit, was studied. This was found to be a relatively inexpensive research model. Its use is advocated for composite tissue transfer as transposition, island, or free myocutaneous flaps.  相似文献   
5.
Metal-dependent formate dehydrogenases (Fdh) from prokaryotic organisms are members of the dimethyl sulfoxide reductase family of mononuclear molybdenum-containing and tungsten-containing enzymes. Fdhs catalyze the oxidation of the formate anion to carbon dioxide in a redox reaction that involves the transfer of two electrons from the substrate to the active site. The active site in the oxidized state comprises a hexacoordinated molybdenum or tungsten ion in a distorted trigonal prismatic geometry. Using this structural model, we calculated the catalytic mechanism of Fdh through density functional theory tools. The simulated mechanism was correlated with the experimental kinetic properties of three different Fdhs isolated from three different Desulfovibrio species. Our studies indicate that the C–H bond break is an event involved in the rate-limiting step of the catalytic cycle. The role in catalysis of conserved amino acid residues involved in metal coordination and near the metal active site is discussed on the basis of experimental and theoretical results.  相似文献   
6.
To increase tissue glycogen content many athletes use anabolic androgenic steroids (AAS). However, the literature concerning the effects of androgens on glycogen metabolism is conflicting. This study aimed to determine the influence of training and AAS on body weight (bw), triglycerides, glucose, tissue glycogen and transaminases levels. Male Wistar rats, randomized into four groups (sedentary vehicle (SV), sedentary AAS (SA), trained vehicle (TV) and trained AAS (TA)), were treated with nadrolone (5 mg/Kg, 2x/week, i.m.) or vehicle. Trained rats performed jumps into water (4 sets, 10 repetitions, 30 sec rest) carrying a 50-70% body wt-load strapped to the chest (5 days/week,6 weeks). Two days after the last session, the animals were killed (bifatorial ANOVA+Tukey test; P < 0.05). Trained animals presented lower bw (TV:345+/-7 vs. SV:380+/-7 and TA:328+/-4 vs SA:370+/-11 g) and triglycerides levels (TV:77+/-3 vs. SV:98+/-4 and TA:79+/-3 vs. SA:98+/-8 mg/dL) and higher glycogen content in liver (TV:5.3+/-0.2 vs. SV:3.9+/-0.1 and TA:5.3+/-0.3 vs. SA:4.6+/-0,2 mg/100 mg) and in gastrocnemious (TV:0.70+/-0.02 vs. SV:0.49+/-0.01 and TA:0.73+/-0.03 vs. SA:0.57+/-0.02 mg/100 mg) than sedentary ones. In the cardiac muscle, the association between training and AAS increased glycogen content (TA:0.19+/-0.01 > SV:0.13+/-0.01=TV:0.13+/-0.01=SA:0.14+/-0.01 mg/100 mg). In the soleus AAS increased glycogen (SA:0.53+/-0.03 vs. SV:0.43+/-0.01 and TA:0.58+/-0.02 vs. TV:0.48+/-0.01 mg/100 mg). Exercise training and AAS had no effect on blood glucose and transaminases levels. Training and AAS effects on glycogen supercompensation are tissue-dependent and the effects of association between them were only observed in the cardiac muscle. These data emphasize the necessity of more studies to confirm greater effects of AAS than those promoted by physical exercise.  相似文献   
7.
8.
    
Connective-tissue growth factor (CTGF) is a modular secreted protein implicated in multiple cellular events such as chondrogenesis, skeletogenesis, angiogenesis and wound healing. CTGF contains four different structural modules. This modular organization is characteristic of members of the CCN family. The acronym was derived from the first three members discovered, cysteine-rich 61 (CYR61), CTGF and nephroblastoma overexpressed (NOV). CTGF is implicated as a mediator of important cell processes such as adhesion, migration, proliferation and differentiation. Extensive data have shown that CTGF interacts particularly with the TGFβ, WNT and MAPK signaling pathways. The capacity of CTGF to interact with different growth factors lends it an important role during early and late development, especially in the anterior region of the embryo. ctgf knockout mice have several cranio-facial defects, and the skeletal system is also greatly affected due to an impairment of the vascular-system development during chondrogenesis. This study, for the first time, indicated that CTGF is a potent inductor of gliogenesis during development. Our results showed that in vitro addition of recombinant CTGF protein to an embryonic mouse neural precursor cell culture increased the number of GFAP- and GFAP/Nestin-positive cells. Surprisingly, CTGF also increased the number of Sox2-positive cells. Moreover, this induction seemed not to involve cell proliferation. In addition, exogenous CTGF activated p44/42 but not p38 or JNK MAPK signaling, and increased the expression and deposition of the fibronectin extracellular matrix protein. Finally, CTGF was also able to induce GFAP as well as Nestin expression in a human malignant glioma stem cell line, suggesting a possible role in the differentiation process of gliomas. These results implicate ctgf as a key gene for astrogenesis during development, and suggest that its mechanism may involve activation of p44/42 MAPK signaling. Additionally, CTGF-induced differentiation of glioblastoma stem cells into a less-tumorigenic state could increase the chances of successful intervention, since differentiated cells are more vulnerable to cancer treatments.  相似文献   
9.
Relatively few studies have explored sex differences in the use of foraging tools among primates other than apes. Although male primates are thought to be more innovative, researchers have reported a female sex bias in the use of feeding tools in wild chimpanzees. We investigate here the nature and extent of sex differences in foraging tool use over 12 mo in a free-ranging group of bearded capuchins (2 males, 5 females, and 3 juveniles) living in the dry Caatinga forests of the Serra da Capivara National Park, Piaui, Brazil. These capuchins used 3 major types of feeding tools: 1) tools for probing; 2) tools for pounding/cracking; and 3) digging stones to extract tubers or roots. Adult males performed 63% (n = 134) of all events of tool use and used tools significantly more frequently than did females, although male bout lengths across all tools (57 s ± 7.9 SE) were equivalent to those of adult females (47.3 s ± 12.6 SE). Both sexes used digging and cracking tools, although at different rates, whereas adult males used sticks to probe for prey and other rewards far more than females. Differential opportunities to use tools were not apparent: >71% of tool-use events occurred on the ground, and males and females spent equal time on the ground. We suggest that sex differences in tool use may function as opportunities for male signaling of investment quality.  相似文献   
10.
The hydrogenase (EC 1.2.2.1) of Desulfovibrio gigas is a complex enzyme containing one nickel center, one [3Fe-4S] and two [4Fe-4S] clusters. Redox intermediates of this enzyme were generated under hydrogen (the natural substrate) using a redox-titration technique and were studied by EPR and M?ssbauer spectroscopy. In the oxidized states, the two [4Fe-4S]2+ clusters exhibit a broad quadrupole doublet with parameters (apparent delta EQ = 1.10 mm/s and delta = 0.35 mm/s) typical for this type of cluster. Upon reduction, the two [4Fe-4S]1+ clusters are spectroscopically distinguishable, allowing the determination of their midpoint redox potentials. The cluster with higher midpoint potential (-290 +/- 20 mV) was labeled Fe-S center I and the other with lower potential (-340 +/- 20 mV), Fe-S center II. Both reduced clusters show atypical magnetic hyperfine coupling constants, suggesting structural differences from the clusters of bacterial ferredoxins. Also, an unusually broad EPR signal, labeled Fe-S signal B', extending from approximately 150 to approximately 450 mT was observed concomitantly with the reduction of the [4Fe-4S] clusters. The following two EPR signals observed at the weak-field region were tentatively attributed to the reduced [3Fe-4S] cluster: (i) a signal with crossover point at g approximately 12, labeled the g = 12 signal, and (ii) a broad signal at the very weak-field region (approximately 3 mT), labeled the Fe-S signal B. The midpoint redox potential associated with the appearance of the g = 12 signal was determined to be -70 +/- 10 mV. At potentials below -250 mV, the g = 12 signal began to decrease in intensity, and simultaneously, the Fe-S signal B appeared. The transformation of the g = 12 signal into the Fe-S signal B was found to parallel the reduction of the two [4Fe-4S] clusters indicating that the [3Fe-4S]o cluster is sensitive to the redox state of the [4Fe-4S] clusters. Detailed redox profiles for the previously reported Ni-signal C and the g = 2.21 signal were obtained in this study, and evidence was found to indicate that these two signals represent two different oxidation states of the enzyme. Finally, the mechanistic implications of our results are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号