首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   11篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   3篇
  2012年   6篇
  2011年   12篇
  2010年   4篇
  2009年   6篇
  2008年   6篇
  2007年   6篇
  2006年   6篇
  2005年   2篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1998年   1篇
  1996年   1篇
  1994年   2篇
  1990年   1篇
  1984年   1篇
排序方式: 共有75条查询结果,搜索用时 62 毫秒
1.
2.
Bloom’s syndrome (BS) which associates genetic instability and predisposition to cancer is caused by mutations in the BLM gene encoding a RecQ family 3′–5′ DNA helicase. It has been proposed that the generation of genetic instability in BS cells could result from an aberrant non-homologous DNA end joining (NHEJ), one of the two main DNA double-strand break (DSB) repair pathways in mammalian cells, the second major pathway being homologous recombination (HR). Using cell extracts, we report first that Ku70/80 and the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), key factors of the end-joining machinery, and BLM are located in close proximity on DNA and that BLM binds to DNA only in the absence of ATP. In the presence of ATP, BLM is phosphorylated and dissociates from DNA in a strictly DNA-PKcs-dependent manner. We also show that BS cells display, in vivo, an accurate joining of DSBs, reflecting thus a functional NHEJ pathway. In sharp contrast, a 5-fold increase of the HR-mediated DNA DSB repair in BS cells was observed. These results support a model in which NHEJ activation mediates BLM dissociation from DNA, whereas, under conditions where HR is favored, e.g. at the replication fork, BLM exhibits an anti-recombinogenic role.  相似文献   
3.
Genome stability is jeopardized by imbalances of the dNTP pool; such imbalances affect the rate of fork progression. For example, cytidine deaminase (CDA) deficiency leads to an excess of dCTP, slowing the replication fork. We describe here a novel mechanism by which pyrimidine pool disequilibrium compromises the completion of replication and chromosome segregation: the intracellular accumulation of dCTP inhibits PARP-1 activity. CDA deficiency results in incomplete DNA replication when cells enter mitosis, leading to the formation of ultrafine anaphase bridges between sister-chromatids at “difficult-to-replicate” sites such as centromeres and fragile sites. Using molecular combing, electron microscopy and a sensitive assay involving cell imaging to quantify steady-state PAR levels, we found that DNA replication was unsuccessful due to the partial inhibition of basal PARP-1 activity, rather than slower fork speed. The stimulation of PARP-1 activity in CDA-deficient cells restores replication and, thus, chromosome segregation. Moreover, increasing intracellular dCTP levels generates under-replication-induced sister-chromatid bridges as efficiently as PARP-1 knockdown. These results have direct implications for Bloom syndrome (BS), a rare genetic disease combining susceptibility to cancer and genomic instability. BS results from mutation of the BLM gene, encoding BLM, a RecQ 3’-5’ DNA helicase, a deficiency of which leads to CDA downregulation. BS cells thus have a CDA defect, resulting in a high frequency of ultrafine anaphase bridges due entirely to dCTP-dependent PARP-1 inhibition and independent of BLM status. Our study describes previously unknown pathological consequences of the distortion of dNTP pools and reveals an unexpected role for PARP-1 in preventing DNA under-replication and chromosome segregation defects.  相似文献   
4.
PML and PML nuclear bodies: implications in antiviral defence   总被引:1,自引:0,他引:1  
Everett RD  Chelbi-Alix MK 《Biochimie》2007,89(6-7):819-830
  相似文献   
5.
Interferon, a growing cytokine family: 50 years of interferon research   总被引:5,自引:0,他引:5  
The establishment of an antiviral state in cells is the defining activity of interferons (IFNs) as well as the property that permitted their discovery in 1957 by Isaacs and Lindenmann. In addition, interferons have other cellular functions that have potential clinical applications. Today, interferons are used for the treatment of a variety of malignancies and viral diseases. The publication of this special issue of Biochimie gives us a great opportunity to review the state of the art in knowledge about interferons and to explore possible future directions. This commentary text will introduce the reviews written by colleagues who are experts in different aspects of interferon research, to mark the 50th anniversary of the discovery of interferon.  相似文献   
6.
Bloom syndrome (BS) is an autosomal recessive disorder characterized by genomic instability and the early development of many types of cancer. Missense mutations have been identified in the BLM gene (encoding a RecQ helicase) in affected individuals, but the molecular mechanism and the structural basis of the effects of these mutations remain to be elucidated. We analysed five disease-causing missense mutations that are localized in the BLM helicase core region: Q672R, I841T, C878R, G891E and C901Y. The disease-causing mutants had low ATPase and helicase activities but their ATP binding abilities were normal, except for Q672, whose ATP binding activity was lower than that of the intact BLM helicase. Mutants C878R, mapping near motif IV, and G891E and C901Y, mapping in motif IV, displayed severe DNA-binding defects. We used molecular modelling to analyse these mutations. Our work provides insights into the molecular basis of BLM pathology, and reveals structural elements implicated in coupling DNA binding to ATP hydrolysis and DNA unwinding. Our findings will help to explain the mechanism underlying BLM catalysis and interpreting new BLM causing mutations identified in the future.  相似文献   
7.
Cell atrophy and loss in depression: reversal by antidepressant treatment   总被引:1,自引:0,他引:1  
Depression is associated with structural alterations in limbic brain regions that control emotion and mood. Studies of chronic stress in animal models and postmortem tissue from depressed subjects demonstrate that these structural alterations result from atrophy and loss of neurons and glial cells. These findings indicate that depression and stress-related mood disorders can be considered mild neurodegenerative disorders. Importantly, there is evidence that these structural alterations can be blocked or even reversed by elimination of stress and by antidepressant treatments. A major focus of current investigations is to characterize the molecular signaling pathways and factors that underlie these effects of stress, depression, and antidepressant treatment. Recent advances in this research area are discussed and potential novel targets for antidepressant development are highlighted.  相似文献   
8.
The desert rodents Psammomys obesus and Gerbillus tarabuli live under extreme conditions and overcome food and water shortage by modes of food and fluid intake specific to each species. Using immunohistochemistry and electron microscopy, we found that the hypothalamic magnocellular nuclei, and in particular, their vasopressinergic component, is highly and similarly developed in Psammomys and Gerbillus. In comparison to other rodents, the hypothalamus in both species contains more magnocellular VP neurons that, together with oxytocin neurons, accumulate in distinct and extensive nuclei. As in dehydrated rodents, many magnocellular neurons contained both neuropeptides. A striking feature of the hypothalamic magnocellular system of Psammomys and Gerbillus was its display of ultrastructural properties related to heightened neurosecretion, namely, a significant reduction in glial coverage of neuronal somata and dendrites in the hypothalamic nuclei. There were many neuronal elements whose surfaces were directly juxtaposed and shared the same synapses. Their magnocellular nuclei also showed a high level of sialylated isoform of the Neural Cell Adhesion Molecule (PSA-NCAM) that underlies their capacity for neuronal and glial plasticity. These species thus offer striking models of structural neuronal and glial plasticity linked to natural conditions of heightened neurosecretion.  相似文献   
9.
We have previously shown that ISG20, an interferon (IFN)-induced gene, encodes a 3' to 5' exoribonuclease member of the DEDD superfamily of exonucleases. ISG20 specifically degrades single-stranded RNA. In this report, using immunofluorescence analysis, we demonstrate that in addition to a diffuse cytoplasmic and nucleoplasmic localization, the endogenous ISG20 protein was present in the nucleus both in the nucleolus and in the Cajal bodies (CBs). In addition, we show that the ectopic expression of the CBs signature protein, coilin, fused to the red fluorescent protein (coilin-dsRed) increased the number of nuclear dots containing both ISG20 and coilin-dsRed. Using electron microcopy analysis, ISG20 appeared principally concentrated in the dense fibrillar component of the nucleolus, the major site for rRNA processing. We also present evidences that ISG20 was associated with survival of motor neuron (SMN)-containing macromolecular nuclear complexes required for the biogenesis of various small nuclear ribonucleoproteins. Finally, we demonstrate that ISG20 was associated with U1 and U2 snRNAs, and U3 snoRNA. The accumulation of ISG20 in the CBs after IFN treatment strongly suggests its involvement in a new route for IFN-mediated inhibition of protein synthesis by modulating snRNA and rRNA maturation.  相似文献   
10.
Topoisomerase (Topo) IIIalpha associates with BLM helicase, which is proposed to be important in the alternative lengthening of telomeres (ALT) pathway that allows telomere recombination in the absence of telomerase. Here, we show that human Topo IIIalpha colocalizes with telomeric proteins at ALT-associated promyelocytic bodies from ALT cells. In these cells, Topo IIIalpha immunoprecipitated with telomere binding protein (TRF) 2 and BLM and was shown to be associated with telomeric DNA by chromatin immunoprecipitation, suggesting that these proteins form a complex at telomere sequences. Topo IIIalpha depletion by small interfering RNA reduced ALT cell survival, but did not affect telomerase-positive cell lines. Moreover, repression of Topo IIIalpha expression in ALT cells reduced the levels of TRF2 and BLM proteins, provoked a strong increase in the formation of anaphase bridges, induced the degradation of the G-overhang signal, and resulted in the appearance of DNA damage at telomeres. In contrast, telomere maintenance and TRF2 levels were unaffected in telomerase-positive cells. We conclude that Topo IIIalpha is an important telomere-associated factor, essential for telomere maintenance and chromosome stability in ALT cells, and speculate on its potential mechanistic function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号