首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
  2021年   1篇
  2020年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
Trade-offs between competitive ability and the other life-history traits are considered to be a major mechanism of competitive coexistence. Many theoretical studies have demonstrated the robustness of such a coexistence mechanism ecologically; however, it is unknown whether the coexistence is robust evolutionarily. Here, we report that evolution of life-history traits not directly related to competition, such as longevity, and predator avoidance, easily collapses competitive coexistence in several competition systems: spatially structured, and predator-mediated two-species competition systems. In addition, we found that a superior competitor can be excluded by an inferior one by common mechanisms among the models. Our results suggest that ecological competitive coexistence due to a life-history trait trade-off balance may not be balanced on an evolutionary timescale, that is, it may be evolutionarily fragile.  相似文献   
2.
3.

Background

Recent experimental studies have demonstrated the importance of invasion history for evolutionary formation of community. However, only few theoretical studies on community evolution have focused on such views.

Methodology and Principal Findings

We used a tri-trophic food web model to analyze the coevolutionary effects of ecological invasions by a mutant and by a predator and/or resource species of a native consumer species community and found that ecological invasions can lead to various evolutionary histories. The invasion of a predator makes multiple evolutionary community histories possible, and the evolutionary history followed can determine both the invasion success of the predator into the native community and the fate of the community. A slight difference in the timing of an ecological invasion can lead to a greatly different fate. In addition, even greatly different community histories can converge as a result of environmental changes such as a predator trait shift or a productivity change. Furthermore, the changes to the evolutionary history may be irreversible.

Conclusions and Significance

Our modeling results suggest that the timing of ecological invasion of a species into a focal community can largely change the evolutionary consequences of the community. Our approach based on adaptive dynamics will be a useful tool to understand the effect of invasion history on evolutionary formation of community.  相似文献   
4.
Most theoretical studies on character displacement and the coexistence of competing species have focused attention on the evolution of competitive traits driven by inter-specific competition. We investigated the evolution of the maturation rate which is not directly related to competition and trades off with the birth rate and how it influences competitive outcomes. Evolution may result in the superior competitor becoming extinct if, initially, the inferior competitor has a lower, and the superior one a higher, maturation rate at the coexistence equilibrium. This counterintuitive result is explained by an explosive increase in the adult population of the inferior competitor as a result of the more rapid evolution of its maturation rate, which is caused by differences in the intensity and direction of selection on the maturation rates of the two species and in their adult densities, which are related to differences in their life histories. Thus, a life history trait trade-off with a competitive trait may cause a competitive ecological coexistence to collapse.  相似文献   
5.
In ecological communities, numerous species coexist and affect each others’ population levels via various types of interspecific interactions. Previous ecological theory explaining multispecies coexistence tended to focus on a single interaction type, such as antagonism, competition, or mutualism, and its consequences on population dynamics. Hence, it remains unclear what, if any, contribution multiple coexisting interaction types have on the multispecies coexistence. Here, we show that the coexistence of multiple interaction types can be essential for multispecies coexistence. We present a simple model in which the exploiter and mutualist adaptively switch between two competing resource species. An adaptive mutualist, which favors the more abundant species, provides a mechanism of majority-advantage and, thus, potentially inhibits the coexistence of resource species. In the absence of an exploiter, an adaptive mutualist leads to competitive exclusion at the resource species level. However, the coexistence of an adaptive exploiter and a mutualist allows the coexistence of all species in the community, because the mutualist-mediated “winner” tends to be suppressed by the adaptive exploiter. The mutualist indirectly increases the abundance of the exploiter through mutualistic interactions, thereby indirectly supporting this coexistence mechanism. In fact, coexistence may occur even if the exploiter or mutualist alone cannot mediate the coexistence of two resources. We conclude that the coexistence of mutualism and antagonism may be the key to the persistence of the four-species module in the presence of adaptive switching.  相似文献   
6.
Population density can be affected by its prey [resource] and predator [consumer] abundances through two different mechanisms: the alternation of birth [or somatic growth] or death rate and inter-habitat movement. While the food-web theory has traditionally been built on the former mechanism, the latter mechanism has formed the basis of a successful theory explaining the spatial distribution of organisms in the context of behavioral and evolutionary ecology. Yet, few studies have compared these two mechanisms, leaving the question of how similar (or different) predictions derived from birth–death-based and movement-based food-web theories unanswered. Here, theoretical models of the tri-trophic (resource–consumer-top predator) food chain were used to compare food-web patterns arising from these two mechanisms. Specifically, we evaluated the response of the food-chain structure to inter-patch differences in productivity for movement-based models and birth–death-based models. Model analysis reveals that adaptive movements give rise to positively correlated responses of all trophic levels to increased productivity; however, this pattern was not observed in the corresponding birth–death-based model. The movement-based model predicts that the food chain response to productivity is determined by the sensitivity of animal movement to the environmental conditions. More specifically, increasing sensitivity of a consumer or top predator leads to smaller inter-patch variance of the resource or consumer density, while increasing inter-patch variance in the consumer or resource density. In conclusion, adaptive movement provides an alternative mechanism correlating the food-web structure to environmental conditions.  相似文献   
7.
The outcome of species interactions is often strongly influenced by variation in the functional traits of the individuals participating. A rather large body of work demonstrates that inducible morphological plasticity in predators and prey can both influence and be influenced by species interaction strength, with important consequences for individual fitness. Much of the past research in this area has focused on the ecological and evolutionary significance of trait plasticity by studying single predator–prey pairs and testing the performance of individuals having induced and noninduced phenotypes. This research has thus been critical in improving our understanding of the adaptive value of trait plasticity and its widespread occurrence across species and community types. More recently, researchers have expanded this foundation by examining how the complexity of organismal design and community-level properties can shape plasticity in functional traits. In addition, researchers have begun to merge evolutionary and ecological perspectives by linking trait plasticity to community dynamics, with particular attention on trait-mediated indirect interactions. Here, we review recent studies on inducible morphological plasticity in predators and their prey with an emphasis on internal and external constraints and how the nature of predator–prey interactions influences the expression of inducible phenotypes. In particular, we focus on multiple-trait plasticity, flexibility and modification of inducible plasticity, and reciprocal plasticity between predator and prey. Based on our arguments on these issues, we propose future research directions that should better integrate evolutionary and population studies and thus improve our understanding of the role of phenotypic plasticity in predator–prey population and community dynamics.  相似文献   
8.
Mougi A 《PloS one》2010,5(11):e13887

Background

Our understanding of coevolution in a predator–prey system is based mostly on pair-wise interactions.

Methodology and Principal Findings

Here I analyze a one-predator–two-prey system in which the predator''s attack ability and the defense abilities of the prey all evolve. The coevolutionary consequences can differ dramatically depending on the initial trait value and the timing of the alternative prey''s invasion into the original system. If the invading prey species has relatively low defense ability when it invades, its defense is likely to evolve to a lower level, stabilizing the population dynamics. In contrast, if when it invades its defense ability is close to that of the resident prey, its defense can evolve to a higher level and that of the resident prey may suddenly cease to evolve, destabilizing the population dynamics. Destabilization due to invasion is likely when the invading prey is adaptively superior (evolution of its defense is less constrained and fast), and it can also occur in a broad condition even when the invading prey is adaptively inferior. In addition, invasion into a resident system far from equilibrium characterized by population oscillations is likely to cause further destabilization.

Conclusions and Significance

An invading prey species is thus likely to destabilize a resident community.  相似文献   
9.
Ecosystems comprise living organisms and organic matter or detritus. In earlier community ecology theories, ecosystem dynamics were normally understood in terms of aboveground, green‐world trophic interaction networks, or food webs. Recently, there has been growing interest in the role played in ecosystem dynamics by detritus in underground, brown‐world interactions. However, the role of decomposers in the consumption of detritus to produce nutrients in ecosystem dynamics remains unclear. Here, an ecosystem model of trophic food chains, detritus, decomposers, and decomposer predators demonstrated that decomposers play a totally different role than that previously predicted, with regard to their relationship between nutrient cycling and ecosystem stability. The high flux of nutrients due to efficient decomposition by decomposers increases ecosystem stability. However, moderate levels of ecosystem openness (with movement of materials) can either greatly increase or decrease ecosystem stability. Furthermore, the stability of an ecosystem peaks at intermediate openness because open systems are less stable than closed systems. These findings suggest that decomposers and the food‐web dynamics of brown‐world interactions are crucial for ecosystem stability, and that the properties of decomposition rate and openness are important in predicting changes in ecosystem stability in response to changes in decomposition efficiency driven by climate change.  相似文献   
10.
The paradox of enrichment in an adaptive world   总被引:1,自引:0,他引:1  
Paradoxically, enrichment can destabilize a predator-prey food web. While adaptive dynamics can greatly influence the stability of interaction systems, few theoretical studies have examined the effect of the adaptive dynamics of interaction-related traits on the possibility of resolution of the paradox of enrichment. We consider the evolution of attack and defence traits of a predator and two prey species in a one predator-two prey system in which the predator practises optimal diet use. The results showed that optimal foraging alone cannot eliminate a pattern of destabilization with enrichment, but trait evolution of the predator or prey can change the pattern to one of stabilization, implying a possible resolution of the paradox of enrichment. Furthermore, trait evolution in all species can broaden the parameter range of stabilization. Importantly, rapid evolution can stabilize this system, but weaken its stability in the face of enrichment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号