首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   5篇
  2023年   1篇
  2019年   2篇
  2018年   1篇
  2017年   5篇
  2016年   1篇
  2015年   5篇
  2014年   2篇
  2013年   5篇
  2012年   11篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2004年   5篇
  2003年   5篇
  2002年   3篇
  2001年   1篇
  1999年   2篇
  1998年   2篇
  1996年   1篇
  1980年   1篇
排序方式: 共有69条查询结果,搜索用时 15 毫秒
1.
The transition from the vegetative rosette stage to the reproductive growth stage (bolting) in the rosette plant Eustoma grandiflorum has a strict requirement for vernalization, a treatment that causes oxidative stress. Since we have shown that reduced glutathione (GSH) and its biosynthesis are associated with bolting in another rosette plant Arabidopsis thaliana, we here investigated whether a similar mechanism governs the vernalization-induced bolting of E. grandiflorum. Addition of GSH or its precursor cysteine, instead of vernalization, induced bolting but other thiols, dithiothreitol and 2-mercaptoethanol, did not. The inductive effect of vernalization on bolting was nullified by addition of buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, without decreasing the plant growth rate. BSO-mediated inhibition of bolting was reversed by addition of GSH but not by cysteine. These indicate that vernalization-induced bolting involves GSH biosynthesis and is specifically regulated by GSH. Plant GSH increased during the early vernalization period along with the activity of gamma-glutamylcysteine synthetase that catalyzes the first step of GSH biosynthesis, although there was little change in amounts of GSH precursor thiols, cysteine and gamma-glutamylcysteine. These findings strongly suggest that vernalization stimulates GSH synthesis and synthesized GSH specifically determines the bolting time of E. grandiflorum.  相似文献   
2.
(?)-6-(7-Methoxy-2-(trifluoromethyl)pyrazolo[1,5-a]pyridin-4-yl)-5-methyl-4,5-dihydropyridazin-3(2H)-one (KCA-1490) exhibits moderate dual PDE3/4-inhibitory activity and promises as a combined bronchodilatory/anti-inflammatory agent. N-alkylation of the pyridazinone ring markedly enhances potency against PDE4 but suppresses PDE3 inhibition. Addition of a 6-aryl-4,5-dihydropyridazin-3(2H)-one extension to the N-alkyl group facilitates both enhancement of PDE4-inhibitory activity and restoration of potent PDE3 inhibition. Both dihydropyridazinone rings, in the core and extension, can be replaced by achiral 4,4-dimethylpyrazolone subunits and the core pyrazolopyridine by isosteric bicyclic heteroaromatics. In combination, these modifications afford potent dual PDE3/4 inhibitors that suppress histamine-induced bronchoconstriction in vivo and exhibit promising anti-inflammatory activity via intratracheal administration.  相似文献   
3.
Several compounds were found to suppress the calling behavior and in vitro pheromone biosynthesis of the Indian meal moth, Plodia interpunctella. The compounds were screened by means of a calling-behavior bioassay with female P. interpunctella. Five derivatives with activities in the nanomolar range were identified, in order of decreasing pheromonostatic activity: 4-hydroxybenzaldehyde semicarbazone (42) > 5-(4-methoxyphenyl)-1,3-oxazole (38) > 5-[4-(tert-butyl)phenyl]-1,3-oxazole (40) > 5-(3-methoxyphenyl)-1,3-oxazole (35) > 5-(4-cyanophenyl)-1,3-oxazole (36). These compounds also showed in vitro inhibitory activity in intracellular de novo pheromone biosynthesis, as determined with isolated pheromone-gland preparations that incorporated [1-(14)C]sodium acetate in the presence of the so-called pheromone-biosynthesis-activating neuropeptide (PBAN). The non-additive effect of the inhibitor with antagonist (yohimbine) for the tyramine (TA) receptor suggests that it could be a tyraminergic antagonist. Three-dimensional (3D) computer models were built from a set of compounds. Among the common-featured models generated by the program Catalyst/HipHop, aromatic-ring (AR) and H-bond-acceptor-lipophilic (HBAl) features were considered to be essential for inhibitory activity in the calling behavior and in vitro pheromone biosynthesis. Active compounds, including yohimbine, mapped well onto all the AR and HBAl features of the hypothesis. Less-active compounds were shown to be unable to achieve an energetically favorable conformation, consistent with our 3D common-feature pharmacophore models. The present hypothesis demonstrates that calling behavior and PBAN-stimulated incorporation of radioactivity are inhibited by tyraminergic antagonists.  相似文献   
4.
We have identified a novel epidermal growth factor (EGF)-like repeat-containing single-pass transmembrane protein that is specifically expressed in the developing and mature central nervous system. Sequence analysis revealed that the 10 EGF-like repeats in the extracellular domain are closely related to those of the developmentally important receptor Notch and its ligand Delta. We thus named the molecule Delta/Notch-like EGF-related receptor (DNER). DNER protein is strongly expressed in several types of post-mitotic neurons, including cortical and hippocampal pyramidal neurons, cerebellar granule cells, and Purkinje cells. DNER protein is localized to the dendritic plasma membrane and endosomes and is excluded from the axons, even when overexpressed. The tyrosine-based sorting motif in the cytoplasmic domain is required for dendritic targeting of DNER. Direct in vivo binding of DNER to the coat-associated protein complex AP-1 strongly suggests that DNER undergoes AP-1-dependent sorting to the somatodendritic compartments from the trans-Golgi network and subsequent passage through the endosomal system.  相似文献   
5.
Background. Helicobacter pylori adhering to the human gastric epithelium causes gastric diseases such as ulcer, carcinoma and lymphoma. It is thus important to observe in detail both the surface of the epithelial cells and the H. pylori that adhered to it for the elucidation of H. pylori‐induced diseases by scanning electron microscopy (SEM). Since the thick mucus layer blocks the observation of the cell surface and the bacteria, it is generally eliminated during the processing for SEM by roughly mechanical methods, but these treatments also demolish the ultrastructure of the cells. We studied the nonmechanical method for removal of mucus layer of gastric epithelium using pronase. Materials and Methods. To determine the optimal concentration of pronase, mucin was used as a substrate for inhibition of the viscosity. Pronase was added in 2% mucin at the concentration of 10, 50, 100, 500, 1000, 2000 or 5000 unit/ml and the flowing time of the mixture was measured. Based on the digestion experiment, biopsied specimens from 24 patients with dyspepsic symptoms were fixed in glutaraldehyde and then washed in rolling with different concentration of pronase. After the pretreatment by pronase, the specimens were treated according to the standard process for SEM. Results. We succeeded in removing the mucus layer on the surface of epithelial cells from the biopsied specimens fixed in glutaraldehyde by rinsing with 2000 unit/ml pronase for 24 hours. Conclusions. Using our digestive method without destroying the ultrastructure, the earliest stage which H. pylori has adhered onto the human gastric epithelium can be observed for the investigation of H. pylori‐induced gastric disorders by SEM.  相似文献   
6.
7.
8.

Background

At our institute, a chemoradioselection strategy has been used to select patients for organ preservation on the basis of response to an initial 30–40 Gy concurrent chemoradiotherapy (CCRT). Patients with a favorable response (i.e., chemoradioselected; CRS) have demonstrated better outcomes than those with an unfavorable response (i.e., nonchemoradioselected; N-CRS). Successful targeting of molecules that attenuate the efficacy of chmoradioselection may improve results. Thus, the aim of this study was to evaluate the association of a novel cancer stem cell (CSC) marker, CD44 variant 9 (CD44v9), with cellular refractoriness to chemoradioselection in advanced head and neck squamous cell carcinoma (HNSCC).

Materials and Methods

Through a medical chart search, 102 patients with advanced HNSCC treated with chemoradioselection from 1997 to 2008 were enrolled. According to our algorithm, 30 patients were CRC following induction CCRT and 72 patients were N-CRS. Using the conventional immunohistochemical technique, biopsy specimens and surgically removed tumor specimens were immunostained with the anti-CD44v9 specific antibodies.

Results

The intrinsic expression levels of CD44v9 in the biopsy specimens did not correlate with the chemoradioselection and patient survival. However, in N-CRS patients, the CD44v9-positive group demonstrated significantly (P = 0.008) worse prognosis, than the CD44v9-negative group. Multivariate analyses demonstrated that among four candidate factors (T, N, response to CCRT, and CD44v9), CD44v9 positivity (HR: 3.145, 95% CI: 1.235–8.008, P = 0.0163) was significantly correlated with the poor prognosis, along with advanced N stage (HR: 3.525, 95% CI: 1.054–9.060, P = 0.0228). Furthermore, the survival rate of the CD44v9-induced group was significantly (P = 0.04) worse than the CD44v9-non-induced group.

Conclusions

CCRT-induced CD44v9-expressing CSCs appear to be a major hurdle to chemoradioselection. CD44v9-targeting seems to be a promising strategy to enhance the efficacy of chemoradioselection and consequent organ preservation and survival.  相似文献   
9.

Background

A number of epidemiological studies demonstrated that postprandial hyperglycemia is a risk factor for cardiovascular disease in individuals with impaired glucose tolerance. Although several laboratory studies have addressed the plausible causal role of postprandial acute hyperglycemia (glucose spikes) in the development of atherosclerosis, there is little convincing evidence in vivo whether the atherosclerotic lesion formation can be accelerated solely by glucose spikes. Here, we assessed the effect of repetitive glucose spikes on atherosclerotic lesion formation in mice.

Methods

Female C57BL/6 mice were fed an atherogenic diet from 8 to 28 weeks of age. During the atherogenic diet feeding period, the mice orally received a glucose solution (50 mg glucose/mouse; G group) or water (W group) twice daily, 6 days a week. Atherosclerotic lesion formation in the aortic sinus was quantitatively analyzed in serial cross-sections by oil red O staining.

Results

G group mice showed transient increases in blood glucose level (~5 mmol/L above W group), and the levels returned to levels similar to those in W group mice within 60 min. No significant differences in glucose tolerance, insulin sensitivity, and plasma lipid profiles were observed after the 20-week repetitive administration between the 2 groups. G group mice showed an approximately 4-fold greater atherosclerotic lesion size in the aortic sinus than W group mice. Gene expression levels of Cd68 and Icam1 in the thoracic aorta were higher in G group mice than in W group mice.

Conclusions

These results indicate that glucose spikes can accelerate atherosclerotic lesion formation, with little influence on other metabolic disorders. Repetitive glucose administration in wild-type mice may serve as a simple and useful approach to better understanding the causal role of glycemic spikes in the development of atherosclerosis.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号