首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   236篇
  免费   18篇
  254篇
  2021年   3篇
  2020年   3篇
  2016年   2篇
  2014年   9篇
  2013年   46篇
  2012年   10篇
  2011年   9篇
  2010年   8篇
  2009年   8篇
  2008年   12篇
  2007年   13篇
  2006年   10篇
  2005年   9篇
  2004年   11篇
  2003年   10篇
  2002年   9篇
  2001年   3篇
  2000年   3篇
  1998年   5篇
  1997年   6篇
  1996年   2篇
  1995年   1篇
  1993年   3篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1982年   4篇
  1981年   7篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   4篇
  1970年   2篇
  1969年   3篇
  1965年   1篇
  1964年   2篇
  1963年   1篇
  1962年   1篇
  1961年   1篇
  1960年   1篇
排序方式: 共有254条查询结果,搜索用时 56 毫秒
1.
2.
3.
Deoxynivalenol (DON) is a hazardous and globally prevalent mycotoxin in cereals. It commonly accumulates in the grain of wheat, barley and other small grain cereals affected by Fusarium head blight (caused by several Fusarium species). The concept of reducing DON in naturally contaminated grain of wheat or barley using a DON-degrading bacterium is promising but has not been accomplished. In this study, we isolated a novel DON-utilising actinomycete, Marmoricola sp. strain MIM116, from wheat heads through a novel isolation procedure including an in situ plant enrichment step. Strain MIM116 had background degradation activity, and the activity was enhanced twofold by the consumption of DON. Among Tween 20, Triton X-100 and Tween 80, we selected Tween 80 as a spreading agent of strain MIM116 because it promoted DON degradation and the growth of strain MIM116 in the presence of DON. The inoculation of MIM116 cell suspension plus 0.01% Tween 80 into 1,000 harvested kernels of wheat and barley resulted in a DON decrease from approximately 3 mg kg?1 to less than 1 mg kg?1 of dry kernels, even when cells had only basal levels of DON-degrading activity. To the best of our knowledge, this is the first report that describes (1) the isolation of a DON-degrading bacterium from wheat heads, (2) the effects of surfactants on the biodegradation of DON and (3) the decrease of DON levels in naturally contaminated wheat and barley grain using a DON-degrading bacterium.  相似文献   
4.
5.
Deoxynivalenol (DON) is a natural toxin of fungi that cause Fusarium head blight disease of wheat and other small-grain cereals. DON accumulates in infected grains and promotes the spread of the infection on wheat, posing serious problems to grain production. The elucidation of DON-catabolic genes and enzymes in DON-degrading microbes will provide new approaches to decrease DON contamination. Here, we report a cytochrome P450 system capable of catabolizing DON in Sphingomonas sp. strain KSM1, a DON-utilizing bacterium newly isolated from lake water. The P450 gene ddnA was cloned through an activity-based screening of a KSM1 genomic library. The genes of its redox partner candidates (flavin adenine dinucleotide [FAD]-dependent ferredoxin reductase and mitochondrial-type [2Fe-2S] ferredoxin) were not found adjacent to ddnA; the redox partner candidates were further cloned separately based on conserved motifs. The DON-catabolic activity was reconstituted in vitro in an electron transfer chain comprising the three enzymes and NADH, with a catalytic efficiency (kcat/Km) of 6.4 mM−1 s−1. The reaction product was identified as 16-hydroxy-deoxynivalenol. A bioassay using wheat seedlings revealed that the hydroxylation dramatically reduced the toxicity of DON to wheat. The enzyme system showed similar catalytic efficiencies toward nivalenol and 3-acetyl deoxynivalenol, toxins that frequently cooccur with DON. These findings identify an enzyme system that catabolizes DON, leading to reduced phytotoxicity to wheat.  相似文献   
6.
Although the absence of intervening sequences (IVSs) within the 23S rRNA genes in Campylobacter lari isolates has been described, there are apparently no reports regarding correlations between the nucleotide sequences of 23S rRNA genes and erythromycin (Ery) susceptibility in C. lari isolates. Here, we determined the minimum inhibitory concentrations of 35 C. lari isolates [n?=?19 for urease-positive thermophilic Campylobacter (UPTC); n?=?16 urease-negative (UN) C. lari] obtained from Asia, Europe, and North America. We found that the 18 isolates were resistant to the Ery (defined as ≧8 μg/mL), and three isolates, UPTC A1, UPTC 92251, and UPTC 504, showed increased resistance (16 μg/mL). No correlations between the IVSs in the helix 45 region within the 23S rRNA gene sequences and Ery resistance were identified in the C. lari isolates examined. In addition, no point mutations occurred at any expected or putative position within the V domain in the isolates. In conclusion, antibiotic resistance against the macrolide erythromycin is mediated through an alternative pathway to that described above.  相似文献   
7.
From the results of taxonomic studies, Streptomyces sp. strain No. KT–151 isolated from a soil sample collected in Kumamoto City, was identified as a strain belonging to Streptomyces luteogriseus Schmitz, Deak, Crook and Hooper 1964. A new antibiotic, produced by this strain, was isolated as a leaflet crystal by ion-exchange chromatography and found to be an amino acid with the molecular formula, C5H12N2O2, and named antibiotic KT–151 (refered to as KT–151 hereinafter). The antibiotic showed antimicrobial activity against various Gram-positive and Gram-negative bacteria in a chemically defined medium but it was antagonized by several amino acids such as valine, leucine, isoleucine and threonine.  相似文献   
8.
The Acid-stable α-amylase and the acid-unstable α-amylase from Aspergillus niger contained one mole of sulfhydryl group per one mole of enzyme, which probably existed correlating with calcium atom that was essential for the amylase activity.

Iodine reacted at acidic pH specifically with the sulfhydryl group of both enzymes and oxidized it to considerably high degree, since about 4 eq of iodine per mole of sulfhydryl group of both enzymes were consumed. The modification of the sulfhydryl group of the acid-stable α-amylase did not affect the amylase acitvity, while, that of the acid-unstable α-amylase reduced it to 70 per cents intact enzyme. It was difficult to carry out carboxy-methylation of the sulfhydryl group of the acid-stable α-amylase under mild conditions maintaining its activity, but that of the acid-unstable α-amylase was easily achieved.

These facts suggested that some differences existed in the neighborhood of the sulfhydryl group of both enzymes, and that the sulfhydryl group of them was not the active site.  相似文献   
9.
Some general properties of the acid-stable dextrinizing amylase of black Aspergillus were investigated comparing with those of Taka-amylase A. The mode of action on starch of this amylase was quite similar to that of Taka-amylase A. Saccharifying degree at red point in starch-iodine color reaction was 5.1% and the limit of starch saccharification was a little over 40 per cent calculated as glucose with both amylases. Maltase activity was absent. Degradation products in the course of starch hydrolysis were also quite similar and they mutarotated downward. So this amylase was decided to be α-type. Thermal stability of the acid-stable α-amylase was higher than that of Taka-amylase A. Its acid stability was much higher than that of Taka-amylase A. Taka-amylase A was inactivated completely at pH 2.2, 37°C, for 30 min, but the acid-stable α-amylase retained 87% of its original activity.

From the amylase preparation of black Aspergillus acid-stable α-amylase and acidunstable α-amylase were separated by gel filtration on sephadex G-100 column. From the acid-unstable α-amylase fraction this enzyme was purified by fractionations with rivanol and acetone, and finally obtained as a homogeneous protein after gel filtration with sephadex G-50. Comparison of some general properties between the two α-amylases was carried out. Catalytic action was quite similar with both enzymes, but dextrinizing unit per mg enzyme protein of the acid-unstable α-amylase was about 5.6 times as large as that of the acid-stable α-amylase. The acid-unstable α-amylase was less heat-stable than the acid-stable α-amylase. Acid stability and pH-activity curve were compared with both α-amylases. High stability of the acid-stable α-amylase in acidic condition was observed, but, in alkaline range, it was more sensitive than the acid-unstable α-amylase.  相似文献   
10.

Background and Purpose

The major obstacles to treatment of pancreatic cancer are the highly invasive capacity and resistance to chemo- and radiotherapy. Glycogen synthase kinase 3β (GSK3β) regulates multiple cellular pathways and is implicated in various diseases including cancer. Here we investigate a pathological role for GSK3β in the invasive and treatment resistant phenotype of pancreatic cancer.

Methods

Pancreatic cancer cells were examined for GSK3β expression, phosphorylation and activity using Western blotting and in vitro kinase assay. The effects of GSK3β inhibition on cancer cell survival, proliferation, invasive ability and susceptibility to gemcitabine and radiation were examined following treatment with a pharmacological inhibitor or by RNA interference. Effects of GSK3β inhibition on cancer cell xenografts were also examined.

Results

Pancreatic cancer cells showed higher expression and activity of GSK3β than non-neoplastic cells, which were associated with changes in its differential phosphorylation. Inhibition of GSK3β significantly reduced the proliferation and survival of cancer cells, sensitized them to gemcitabine and ionizing radiation, and attenuated their migration and invasion. These effects were associated with decreases in cyclin D1 expression and Rb phosphorylation. Inhibition of GSK3β also altered the subcellular localization of Rac1 and F-actin and the cellular microarchitecture, including lamellipodia. Coincident with these changes were the reduced secretion of matrix metalloproteinase-2 (MMP-2) and decreased phosphorylation of focal adhesion kinase (FAK). The effects of GSK3β inhibition on tumor invasion, susceptibility to gemcitabine, MMP-2 expression and FAK phosphorylation were observed in tumor xenografts.

Conclusion

The targeting of GSK3β represents an effective strategy to overcome the dual challenges of invasiveness and treatment resistance in pancreatic cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号