首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   252篇
  免费   18篇
  国内免费   1篇
  271篇
  2020年   2篇
  2018年   2篇
  2016年   2篇
  2015年   2篇
  2014年   3篇
  2013年   38篇
  2012年   7篇
  2011年   8篇
  2010年   6篇
  2009年   5篇
  2008年   9篇
  2007年   3篇
  2006年   7篇
  2005年   13篇
  2004年   14篇
  2003年   10篇
  2002年   14篇
  2001年   9篇
  2000年   9篇
  1999年   6篇
  1998年   2篇
  1996年   2篇
  1994年   1篇
  1992年   5篇
  1991年   5篇
  1990年   5篇
  1989年   7篇
  1988年   7篇
  1987年   6篇
  1986年   3篇
  1985年   5篇
  1984年   3篇
  1983年   5篇
  1982年   6篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   3篇
  1974年   2篇
  1973年   4篇
  1972年   3篇
  1971年   3篇
  1970年   2篇
  1969年   2篇
  1968年   1篇
  1967年   2篇
  1966年   2篇
  1965年   2篇
排序方式: 共有271条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
The effect of glucagon on the phosphorylation and the enzymic activity of phosphofructokinase in rat liver in vivo was investigated. Glucagon stimulated the phosphorylation of liver phosphofructokinase approximately 3- to 5-fold and increased cAMP levels 5-fold and blood glucose levels 2-fold over the values obtained for control animals. The specific radioactivity of ATP isolated from liver was the same in both control and hormone-treated animals. During the purification of the 32P-labeled enzyme from both animals, no difference was observed in the total or specific enzyme activities of the enzymes from the various fractions. Thus, phosphofructokinase appears to be phosphorylated in vivo by a cyclic AMP-dependent protein kinase. Although phosphorylation does not affect the maximum catalytic activity of the enzyme, it does render the enzyme significantly more sensitive to ATP inhibition. Thus, at a given concentration of ATP, the phosphorylated phosphofructokinase exhibits considerably lower activity than the unphosphorylated enzyme. The possible relationship between our observations and glucagon-mediated control of glycolysis is discussed.  相似文献   
5.
Guanidoacetate methyltransferase (EC 2.1.1.2) has been purified about 800-fold from rat liver. The purified preparation shows a single protein band on polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate. The molecular weight of the enzyme is estimated to be 25,000 and 26,000 by Sephadex gel molecular-exclusion chromatography and by electrophoresis in polyacrylamide gradient gel, respectively. The sodium dodecyl sulfate-denatured enzyme also has a molecular weight of 26,000; thus, the enzyme is a monomeric protein. Guanidoacetate methyltransferase as isolated is catalytically inactive, but is readily reactivated by incubation with a thiol. The reactivated enzyme, which contains 3 mol of sulfhydryl groups/mol of enzyme, is again inactivated by oxidized glutathione. This inactivation is accompanied by the disappearance of two sulfhydryl residues. The relationship between the loss of enzyme activity and the number of residues disappeared indicates that the integrity of these sulfhydryl residues is critical for activity. The oxidized enzyme fails to bind the substrate S-adenosylmethionine as evidenced by the equilibrium dialysis study. Alkylation of the nonoxidizable sulfhydryl by N-ethylmaleimide shows that this residue is also essential for activity. UV absorption, fluorescence, and CD spectra show no difference between the reduced and oxidized enzymes, but the former is more susceptible to proteolytic attack by trypsin. The enzyme has an isoelectric pH of 5.3, and is most active at pH 9.0. From the CD spectrum, an α helix content of 15% is calculated. The Km values for guanidoacetate and S-adenosylmethionine are 97.5 and 6.73 μm, respectively, at pH 8.0 and 37 °C.  相似文献   
6.
Fructose-6-P binding sites of rat liver and bovine heart Fru-6-P,2-kinase:Fru-2,6-bisphosphatase were investigated with an affinity labeling reagent, N-bromoacetylethanolamine phosphate. The rat liver enzyme was inactivated 97% by the reagent in 60 min, and the rate of inactivation followed pseudo-first order kinetics. The bovine heart enzyme was inactivated 90% within 60 min, but the inactivation rate followed pseudo-first order up to 80% inactivation and then became nonlinear. The presence of fructose-6-P retarded the extent of the inactivation to approximately 40% in 60 min. In order to determine the amino acid sequence of the fructose-6-P binding site, both enzymes were reacted with N-bromo[14C]acetylethanolamine-P and digested with trypsin; radiolabeled tryptic peptides were isolated and sequenced. A single 14C-labeled peptide was isolated from the rat liver enzyme, and the amino acid sequence of the peptide was determined as Lys-Gln-Cys-Ala-Leu-Ala-Leu-Lys. A major and two minor peptides were isolated from bovine heart enzyme whose amino acid sequences were Lys-Gln-Cys-Ala-Leu-Val-Ala-Leu-Lys, Arg-Ile-Glu-Cys-Tyr-Lys, and Ile-Glu-Cys-Tyr-Lys, respectively. In all cases, N-bromoacetylethanolamine-P had alkylated the cysteine residues. The amount of bromo[14C]acetylethanolamine-P incorporated into rat liver and beef heart was 1.3 mol/mol of subunit and 2.1 mol/mol of subunit, respectively, and the incorporations in the presence of Fru-6-P were reduced to 0.34 mol/mol of subunit and 0.9 mol/mol of subunit, respectively. Thus, the main fructose-6-P binding site of rat liver and bovine heart enzymes was identical except for a single amino acid substitution of valine for alanine in the latter enzyme. This peptide corresponded to residues 105 to 113 from the N terminus of the known amino acid sequence of rat liver enzyme, but since the complete sequence of bovine heart enzyme is not known, the location of the same peptide in the heart enzyme cannot be assigned.  相似文献   
7.
Recent breakthroughs and technological improvements are rapidly generating evidence supporting the “swinging lever arm model” for force production by myosin. Unlike previous models, this model posits that the globular domain of the myosin motor binds to actin with a constant orientation during force generation. Movement of the neck domain of the motor is hypothesized to occur relative to the globular domain much like a lever arm. This intramolecular conformational change drives the movement of the bound actin. The swinging lever arm model is supported by or consistent with a large number of experimental data obtained with skeletal muscle or slime mold myosins, all of which move actin filaments at rates between 1 and 10 μm/sin vitro. Recently myosin was purified, fromChara internodal cells.In vitro the purifiedChara myosin moves actin filaments at rates one order of magnitude faster than the “fast” skeletal muscle myosin. While this ultra fast movement is not necessarily inconsistent with the swinging lever arm model, one or more specific facets of the motor must be altered in theChara motor in order to accommodate such rapid movement. These characteristics are experimentally testable, thus the ultra fast movement byChara myosin represents a powerful and compelling test of the swinging lever arm model.  相似文献   
8.
In perfused rat liver, the effects of various hormones on the stimulation of phosphorylation and allosteric properties of purified phosphorfructokinase were investigated. Rat livers were perfused with [32P]phosphate followed with various hormones or cyclicAMP, and 32P-labeled phosphofructokinase was isolated. 32P incorporation into the enzyme and enzyme inhibition by ATP or citrate were determined. Only glucagon increased the 32P incorporation into phosphofructokinase and this increase was approximately threefold. The cyclicAMP level was increased simultaneously approximately four- to fivefold compared to the control perfused liver. Similar results were obtained by perfusing the liver with cyclicAMP (0.1 mm). The phosphorylated phosphofructokinase showed a decrease in the Ki values for ATP (from 0.4 to 0.2 mm) and citrate (from 2 to 0.6 mm). Neither epinephrine nor insulin affected the extent of phosphorylation or the allosteric properties of the enzyme. The half-maximal concentration of glucagon required for phosphorylation of phosphofructokinase and modification of its allosteric properties was approximately 6 × 10?11m. It is concluded that glucagon increases the inhibition of liver phosphofructokinase by ATP and citrate through phosphorylation of the enzyme involving a β-receptor-mediated cyclicAMP-dependent mechanism.  相似文献   
9.
We used molecular genetic approaches to delete 521 amino acid residues from the proximal portion of the Dictyostelium myosin II tail. The deletion encompasses approximately 40% of the tail, including the S2-LMM junction, a region that in muscle myosin II has been proposed to be important for contraction. The functions of the mutant myosin II are indistinguishable from the wild-type myosin II in our in vitro assays. It binds to actin in a typical rigor configuration in the absence of ATP and it forms filaments in a normal salt-dependent manner. In an in vitro motility assay, both monomeric and filamentous forms of the mutant myosin II translocate actin filaments at 2.4 microns/s at 30 degrees C, similar to that of wild-type myosin II. The mutant myosin II is also functional in vivo. Cells expressing the mutant myosin II in place of the native myosin II perform myosin II-dependent activities such as cytokinesis and formation of fruiting bodies, albeit inefficiently. Growth of the mutant cells in suspension gives rise to many large multinucleated cells, demonstrating that cytokinesis often fails. The majority of the fruiting bodies are also morphologically abnormal. These results demonstrate that this region of the myosin II tail is not required for motile activities but its presence is necessary for optimum function in vivo.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号