全文获取类型
收费全文 | 268篇 |
免费 | 10篇 |
专业分类
278篇 |
出版年
2022年 | 4篇 |
2021年 | 1篇 |
2018年 | 1篇 |
2017年 | 2篇 |
2016年 | 10篇 |
2015年 | 11篇 |
2014年 | 10篇 |
2013年 | 11篇 |
2012年 | 14篇 |
2011年 | 13篇 |
2010年 | 3篇 |
2009年 | 7篇 |
2008年 | 9篇 |
2007年 | 8篇 |
2006年 | 8篇 |
2005年 | 14篇 |
2004年 | 15篇 |
2003年 | 14篇 |
2002年 | 15篇 |
2001年 | 3篇 |
2000年 | 1篇 |
1999年 | 4篇 |
1998年 | 5篇 |
1997年 | 4篇 |
1996年 | 2篇 |
1992年 | 5篇 |
1991年 | 8篇 |
1990年 | 10篇 |
1989年 | 6篇 |
1988年 | 9篇 |
1987年 | 2篇 |
1986年 | 5篇 |
1985年 | 3篇 |
1984年 | 4篇 |
1983年 | 5篇 |
1982年 | 5篇 |
1981年 | 1篇 |
1980年 | 2篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1974年 | 2篇 |
1973年 | 2篇 |
1972年 | 1篇 |
1971年 | 2篇 |
1970年 | 2篇 |
1969年 | 3篇 |
1965年 | 5篇 |
排序方式: 共有278条查询结果,搜索用时 15 毫秒
1.
Saito S Frank GD Mifune M Ohba M Utsunomiya H Motley ED Inagami T Eguchi S 《The Journal of biological chemistry》2002,277(47):44695-44700
Reactive oxygen species are involved in the mitogenic signal transduction cascades initiated by several growth factors and play a critical role in mediating cardiovascular diseases. Interestingly, H(2)O(2) induces tyrosine phosphorylation and trans-activation of the platelet-derived growth factor receptor and the epidermal growth factor receptor in many cell lines including vascular smooth muscle cells. To investigate the molecular mechanism by which reactive oxygen species contribute to vascular diseases, we have examined a signal transduction cascade involved in H(2)O(2)-induced platelet-derived growth factor receptor activation in vascular smooth muscle cells. We found that H(2)O(2) induced a ligand-independent phosphorylation of the platelet-derived growth factor-beta receptor at Tyr(1021), a phospholipase C-gamma binding site, involving the requirement of protein kinase C-delta and c-Src that is distinct from a ligand-dependent autophosphorylation. Also, H(2)O(2) induced the association of protein kinase C-delta with the platelet-derived growth factor-beta receptor and c-Src in vascular smooth muscle cells. These findings will provide new mechanistic insights by which enhanced reactive oxygen species production in vascular smooth muscle cells induces unique alleys of signal transduction distinct from those induced by endogenous ligands leading to an abnormal vascular remodeling process. 相似文献
2.
3.
4.
Localization and possible function of 20 kDa actin-modulating protein (actolinkin) in the sea urchin egg 总被引:1,自引:0,他引:1
We have previously described a novel actin-capping protein, a 20,000-molecular weight protein (20K protein)-actin complex (20K-A) isolated from sea urchin eggs. In the present study, the localization and possible function of this 20K protein were investigated. The 20K protein was localized in the sea urchin egg cortex. Its distribution in the cortex as revealed by immunofluorescence microscopy did not change during or after fertilization up to the first mitosis, but it was concentrated to some extent in the cleavage furrow region. Exogenously added actin polymerized on the cortex isolated from unfertilized egg; however, actin did not polymerize on the cortex extracted with 0.6 M KCl, that is, the cell membrane, which lost the 20K protein. The cell membrane preincubated with 20K-A restored the activity to grow actin filaments. When decorated with myosin subfragment 1, almost all the actin filaments showed the arrowhead configuration pointing away from the membrane, indicating that they were connected to the membrane at their barbed ends. These results strongly suggest that the 20K protein connects actin filaments to the plasma membrane of sea urchin eggs. Because of this property we call this protein "actolinkin". 相似文献
5.
Clastogenicity of 1-nitropyrene, dinitropyrenes, fluorene and mononitrofluorenes in cultured Chinese hamster cells 总被引:3,自引:0,他引:3
The chromosomal aberration test using a Chinese hamster lung cell line (CHL) was carried out on 1-nitropyrene (NP), 3 dinitropyrenes (DNPs), fluorene and 4 mononitrofluorenes with and without metabolic activation (rat S9 mix). The 3 DNPs (1,3-, 1,6- and 1,8-DNP) induced chromosomal aberrations in the absence of S9 mix. The frequencies of cells with aberrations after treatment for 48 h were 43% at 2 micrograms/ml of 1,3-DNP, 55% at 0.1 microgram/ml of 1,6-DNP and 45% at 0.025 microgram/ml of 1,8-DNP, indicating the order of clastogenic potency as 1,8- greater than 1,6- greater than 1,3-DNP. On the other hand, 1-NP, which is known to be a direct-acting mutagen in bacteria, was negative in the chromosomal aberration test without S9 mix, but clearly positive with S9 mix. This effect was dependent on the concentration of the S9 fraction in the reaction mixture. High-pressure liquid chromatography analysis showed that 1-NP was converted by S9 mix to several metabolites, including 1-aminopyrene (AP). The clastogenic activity of 1-AP, however, was equivocal without S9 mix, suggesting that active clastogens other than 1-AP exist. Fluorene induced chromosomal aberrations only in the presence of S9 mix (61.8% at 25 micrograms/ml). 1-, 2-, 3- and 4-nitrofluorene (NF) were more clastogenic in the presence of S9 mix than in the absence of S9 mix, suggesting that NFs were converted to more active clastogens by S9 mix. 相似文献
6.
Kinetics of micronucleus formation in relation to chromosomal aberrations in mouse bone marrow 总被引:1,自引:0,他引:1
A simulation analysis of the kinetics of micronucleus formation in polychromatic erythrocytes in mouse bone marrow was performed after a single administration of 3 chemicals--mitomycin C (MMC), 6-mercaptopurine (6-MP) and 1-beta-D-arabinofuranosylcytosine (Ara-C)--with different modes of action. The time-response patterns in the incidence of chromosomal aberrations and micronuclei after treatment with each chemical were compared and subjected to the simulation study with 3 parameters. Two of them, the time between the final mitotic metaphase of the erythroid series and nucleus expulsion (T1), and the duration of the polychromatic erythrocyte (PCE) stage in the bone marrow (T2), were almost identical for the 3 chemicals. However, the coefficients of formation rate of micronucleated cells resulting from cells with chromosomal aberration(s) (k) differed: Ara-C differed from the other two. These results indicate that chromosomal aberrations, especially chromatid breaks and probably gaps, induced by this chemical, effectively contribute to micronucleus formation. The DNA content of micronuclei was also compared to the length of acentric fragments induced by Ara-C and it was found that their distributions were comparable. These findings strongly suggest that chromosomal aberrations induced by chemicals are essential events for the induction of micronuclei in the PCE of bone marrow. 相似文献
7.
Molecular interaction between fukutin and POMGnT1 in the glycosylation pathway of alpha-dystroglycan
Xiong H Kobayashi K Tachikawa M Manya H Takeda S Chiyonobu T Fujikake N Wang F Nishimoto A Morris GE Nagai Y Kanagawa M Endo T Toda T 《Biochemical and biophysical research communications》2006,350(4):935-941
The recent identification of mutations in genes encoding demonstrated or putative glycosyltransferases has revealed a novel mechanism for congenital muscular dystrophy. Hypoglycosylated alpha-dystroglycan (alpha-DG) is commonly seen in Fukuyama-type congenital muscular dystrophy (FCMD), muscle-eye-brain disease (MEB), Walker-Warburg syndrome (WWS), and Large(myd) mice. POMGnT1 and POMTs, the gene products responsible for MEB and WWS, respectively, synthesize unique O-mannose sugar chains on alpha-DG. The function of fukutin, the gene product responsible for FCMD, remains undetermined. Here we show that fukutin co-localizes with POMGnT1 in the Golgi apparatus. Direct interaction between fukutin and POMGnT1 was confirmed by co-immunoprecipitation and two-hybrid analyses. The transmembrane region of fukutin mediates its localization to the Golgi and participates in the interaction with POMGnT1. Y371C, a missense mutation found in FCMD, retains fukutin in the ER and also redirects POMGnT1 to the ER. Finally, we demonstrate reduced POMGnT1 enzymatic activity in transgenic knock-in mice carrying the retrotransposal insertion in the fukutin gene, the prevalent mutation in FCMD. From these findings, we propose that fukutin forms a complex with POMGnT1 and may modulate its enzymatic activity. 相似文献
8.
Steinberg R Harari OA Lidington EA Boyle JJ Nohadani M Samarel AM Ohba M Haskard DO Mason JC 《The Journal of biological chemistry》2007,282(44):32288-32297
Endothelial cell apoptosis is associated with vascular injury and predisposes to atherogenesis. Endothelial cells express anti-apoptotic genes including Bcl-2, Bcl-XL and survivin, which also contribute to angiogenesis and vascular remodeling. We report a central role for protein kinase Cepsilon (PKCepsilon) in the regulation of Bcl-2 expression and cytoprotection of human vascular endothelium against apoptosis. Using myristoylated inhibitory peptides, a predominant role for PKCepsilon in vascular endothelial growth factor-mediated endothelial resistance to apoptosis was revealed. Immunoblotting of endothelial cells infected with an adenovirus expressing a constitutively active form of PKCepsilon (Adv-PKCepsilon-CA) or control Adv-beta-galactosidase demonstrated a 3-fold, PKCepsilon-dependent increase in Bcl-2 expression, with no significant change in Bcl-XL, Bad, Bak, or Bax. The induction of Bcl-2 inhibited apoptosis induced by serum starvation or etoposide, and PKCepsilon activation attenuated etoposide-induced caspase-3 cleavage. The functional role of Bcl-2 was confirmed with Bcl-2 antagonist HA-14-1. Inhibition of phosphoinositide 3-kinase attenuated vascular endothelial growth factor-induced protection against apoptosis, and this was rescued by overexpression of constitutively active PKCepsilon, suggesting PKCepsilon acts downstream of phosphoinositide 3-kinase. Co-immunoprecipitation studies demonstrated a physical interaction between PKCepsilon and Akt, which resulted in formation of a signaling complex, leading to optimal induction of Bcl-2. This study reveals a pivotal role for PKCepsilon in endothelial cell cytoprotection against apoptosis. We demonstrate that PKCepsilon forms a signaling complex and acts co-operatively with Akt to protect human vascular endothelial cells against apoptosis through induction of the anti-apoptotic protein Bcl-2 and inhibition of caspase-3 cleavage. 相似文献
9.
M Fukuhara T Nohmi K Mizokami M Sunouchi M Ishidate A Takanaka 《Journal of biochemistry》1989,106(2):253-258
Three forms of cytochrome P-450 of liver microsomes of 3-methylcholanthrene-treated Golden hamsters were purified and characterized as regards their catalytic activity toward aflatoxin B1-related hepatocarcinogenic mycotoxins. These include two major forms, designated as cytochrome P-450-AFB (P-450-I) and P-450-II, and one minor form, P-450-III. Cytochromes P-450-AFB, P-450-II, and P-450-III have their absorption maximum in the carbon monoxide-complex of the reduced form at 448.5, 447.0, and 448.0 nm, have apparent molecular weights of 56,000, 58,000, and 59,500, and are in the low spin, high spin, and low spin state, respectively. Of these, cytochrome P-450-AFB was shown to be highly active in the mutagenic activation of aflatoxin B1-related hepatocarcinogens such as sterigmatocystin and O-methylsterigmatocystin. Activation of aflatoxin B1 by hepatic microsomes of 3-methylcholanthrene-treated hamsters was inhibited almost completely by the antibody against P-450-AFB but not by the antibody against P-450-II, indicating that P-450-AFB is the major component responsible for the activation of aflatoxin B1 by hamster liver. Western blot analysis demonstrated that no protein cross-reacted with the antibody to P-450-AFB in the liver microsomes from guinea pig, rat, mouse, and house musk shrew (Suncus murinus) treated with 3-methylcholanthrene, while one or two proteins cross-reacted with the antibody to P-450-II in the liver microsomes of these animals. 相似文献
10.
A proposed battery of tests for the initial evaluation of the mutagenic potential of medicinal and industrial chemicals 总被引:3,自引:0,他引:3
M Ishidate 《Mutation research》1988,205(1-4):397-407