首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1642篇
  免费   178篇
  国内免费   1篇
  1821篇
  2022年   9篇
  2021年   8篇
  2020年   9篇
  2019年   9篇
  2018年   16篇
  2017年   9篇
  2016年   28篇
  2015年   31篇
  2014年   41篇
  2013年   105篇
  2012年   78篇
  2011年   96篇
  2010年   58篇
  2009年   47篇
  2008年   80篇
  2007年   72篇
  2006年   73篇
  2005年   85篇
  2004年   99篇
  2003年   86篇
  2002年   105篇
  2001年   42篇
  2000年   50篇
  1999年   40篇
  1998年   36篇
  1997年   21篇
  1996年   14篇
  1995年   15篇
  1994年   23篇
  1993年   22篇
  1992年   43篇
  1991年   28篇
  1990年   37篇
  1989年   31篇
  1988年   34篇
  1987年   24篇
  1986年   22篇
  1985年   17篇
  1984年   8篇
  1982年   14篇
  1980年   8篇
  1979年   17篇
  1978年   13篇
  1977年   13篇
  1975年   11篇
  1974年   13篇
  1971年   9篇
  1970年   10篇
  1968年   13篇
  1966年   7篇
排序方式: 共有1821条查询结果,搜索用时 12 毫秒
1.
The bacterial H+-translocating NADH:quinone oxidoreductase (NDH-1) catalyzes electron transfer from NADH to quinone coupled with proton pumping across the cytoplasmic membrane. The NuoK subunit (counterpart of the mitochondrial ND4L subunit) is one of the seven hydrophobic subunits in the membrane domain and bears three transmembrane segments (TM1–3). Two glutamic residues located in the adjacent transmembrane helices of NuoK are important for the energy coupled activity of NDH-1. In particular, mutation of the highly conserved carboxyl residue (KGlu-36 in TM2) to Ala led to a complete loss of the NDH-1 activities. Mutation of the second conserved carboxyl residue (KGlu-72 in TM3) moderately reduced the activities. To clarify the contribution of NuoK to the mechanism of proton translocation, we relocated these two conserved residues. When we shifted KGlu-36 along TM2 to positions 32, 38, 39, and 40, the mutants largely retained energy transducing NDH-1 activities. According to the recent structural information, these positions are located in the vicinity of KGlu-36, present in the same helix phase, in an immediately before and after helix turn. In an earlier study, a double mutation of two arginine residues located in a short cytoplasmic loop between TM1 and TM2 (loop-1) showed a drastic effect on energy transducing activities. Therefore, the importance of this cytosolic loop of NuoK (KArg-25, KArg-26, and KAsn-27) for the energy transducing activities was extensively studied. The probable roles of subunit NuoK in the energy transducing mechanism of NDH-1 are discussed.  相似文献   
2.
The effect of phosphate on the binuclear iron center of pink (reduced) uteroferrin was examined by magnetic resonance and optical spectroscopy. The purple (oxidized) protein, which contains 1 mol of tightly bound phosphate per mol of enzyme at isolation, does not give rise to a 31P NMR signal. Phosphate binding to phosphate-stripped pink uteroferrin is indistinguishable from that in the native purple phosphoprotein. As measured by EPR and optical spectroscopy, the rate of reaction between phosphate and pink uteroferrin is pH-dependent, decreasing as the pH increases. Phosphate is capable of binding to the reduced protein between pH 3 and 7.8, resulting in formation of the purple uteroferrin-phosphate complex. Evans susceptibility measurements at pH 4.9 indicate that the EPR silent species with a maximum absorption at 535 nm, generated upon phosphate addition to pink uteroferrin, is diamagnetic. Moreover, phosphate causes disappearance of the hyperfine-shifted resonances in the 1H NMR spectra of the reduced protein. We therefore have not been able to identify the paramagnetic "purple reduced enzyme-phosphate complex" reported by Pyrz et al. (Pyrz, J. W., Sage, J. T., Debrunner, P. G., and Que, Jr., L. (1986) J. Biol Chem. 261, 11015-11020) using Mossbauer spectroscopy and dithionite-reduced 57Fe-reconstituted uteroferrin. Our present data with native unmodified enzyme are in accord with our earlier results (Antanaitis, B. C., and Aisen, P. (1985) J. Biol. Chem. 260, 751-756) and with the results of Burman et al. (Burman, S., Davis, J. C., Weber, M. J., and Averill, B. A. (1986) Biochem. Biophys. Res. Commun. 136, 490-497) on bovine spleen phosphatase, suggesting that phosphate binding to reduced protein rapidly induces oxidation of the binuclear iron center.  相似文献   
3.
A recently established thymic stroma-derived cell line (TSCL) supported the growth of the interleukin (IL) 2-dependent, antigen-specific helper T cell (Th) clone, 9-16, without requirement for IL-2 and antigen, and such growth was substituted by a factor produced into cultures by this established TSCL. This substance, thymic stroma-derived T cell-growth factor (TSTGF), was capable of inducing the proliferation of various Th clones including 9-16 Th clone, but not of cytotoxic T cell clones. TSTGF-induced growth promotion was obtained in a dose-dependent fashion and in maintaining antigen specificity of Th clones. The culture supernatant from the TSCL did not contain detectable level of IL-1, IL-2, IL-3, IL-4, or interferon activity. The proliferation of 9-16 Th clone was stimulated by recombinant IL-2 and IL-4 as well as TSTGF, but not by IL-1, IL-3, or interferons. However, the proliferation of this Th clone by IL-2 or IL-4 was almost completely inhibited by anti-IL-2 receptor or anti-IL-4 monoclonal antibody, respectively, whereas TSTGF-induced growth of 9-16 Th clones was not affected by either type of antibody, demonstrating that TSTGF is functionally distinct from IL-2 and IL-4. In addition, TSTGF activity was also obtained from the culture supernatant of the primary thymic explant, which was freshly prepared. These results indicate that the primary thymic explant as well as an established TSCL produce factors capable of promoting the growth of helper but not cytotoxic type of T cells in the absence of T cell growth factors thus far defined.  相似文献   
4.
5.
M Hatakeyama  H Mori  T Doi  T Taniguchi 《Cell》1989,59(5):837-845
The functional, high affinity form of interleukin-2 receptor (IL-2R) is composed of two receptor components, the IL-2R alpha (p55) and IL-2R beta (p70-75) chains. Unlike the IL-2R alpha chain, the IL-2R beta chain contains a large cytoplasmic domain that shows no obvious tyrosine kinase motif. In the present study, we report the establishment of a system in which the cDNA-directed human IL-2R beta allows growth signal transduction in a mouse pro-B cell line. This system enabled us to identify a unique region within the cytoplasmic domain of the human IL-2R beta chain essential for ligand-mediated signal transduction. We also demonstrate that certain cytoplasmic deletion mutants in the IL-2R beta chain, although deficient in signal transduction, can still form high affinity IL-2R in conjunction with endogenous mouse IL-2R alpha chain; the mutants are still able to internalize the ligand as well.  相似文献   
6.
The cDNA coding for the major nonstructural protein, NS1, of bluetongue serotype 17 (BTV-17) was cloned previously. Using pUC plasmids, we have successfully expressed the NS1 protein in Escherichia coli as a LacZ-NS1 fusion protein. The recombinant NS1 protein reacted with rabbit anti-BTV-17 antiserum, and was thus immunologically indistinguishable from the native BTV-17 NS1 protein. This was the first bluetongue viral protein to be produced in a bacterial system.  相似文献   
7.
Three new mutants of Escherichia coli showing thermosensitive cell growth and division were isolated, and the mutations were mapped to the mra region at 2 min on the E. coli chromosome map distal to leuA. Two mutations were mapped closely upstream of ftsI (also called pbpB), in a region of 600 bases; the fts-36 mutant showed thermosensitive growth and formed filamentous cells at 42 degrees C, whereas the lts-33 mutant lysed at 42 degrees C without forming filamentous cells. The mutation in the third new thermosensitive, filament-forming mutant, named ftsW, was mapped between murF and murG. By isolation of these three mutants, about 90% of the 17-kilobase region from fts-36-lts-33 to envA could be filled with genes for cell division and growth, and the genes could be aligned.  相似文献   
8.
Effect of exogenous fatty acids on zygote formation in Saccharomyces cerevisiae was studied. Arachidonic and oleic acids considerably stimulated zygote formation, but other fatty acids tested, linoleic, linolenic, stearic and palmitic acids, did not. Pretreatment experiments with arachidonic acid showed that the stimulation of zygote formation by the fatty acid required the presence of mating pheromone.Abbreviations YPD yeast-peptone-dextrose medium - A530 absorbance at 530 nm  相似文献   
9.
Uteroferrin, an acid phosphatase with a spin-coupled and redox-active binuclear iron center, is paramagnetic in its pink, enzymatically active, mixed-valence (S = 1/2) state. Phosphate, a product and inhibitor of the enzymatic activity of uteroferrin, converts the pink, EPR-active form of the protein to a purple, EPR-silent species. In contrast, molybdate, a tetrahedral oxyanion analog of phosphate, transforms the EPR spectrum of uteroferrin from a rhombic to an axial form. With both electron spin echo envelope modulation (ESEEM) and electron nuclear double resonance (ENDOR) spectroscopies, we observe a hyperfine interaction of [95Mo]molybdate with the S = 1/2, Fe(II)-Fe(III) center of the protein. A pair of 95Mo resonances centered at the 95Mo Larmor frequency at the applied magnetic field and separated by a hyperfine coupling constant of 1.2 MHz is evident. Therefore, a single monomeric species of molybdate is close to, and likely a ligand of, the binuclear cluster. 1H ENDOR studies on uteroferrin reveal at least six sets of lines mirrored about the 1H Larmor frequency. Two pairs of these lines become reduced in intensity when the protein is exchanged against D2O. Moreover, ESEEM and 2H ENDOR spectra display resonances at the 2H Larmor frequency. Therefore, the metal-binding region of the protein is accessible to solvent. Additional deuterium lines observable by ESEEM spectroscopy provide evidence for a population of strongly coupled, readily exchangeable protons associated with the binuclear center. The measured hyperfine coupling constants for these deuterons are orientation-dependent with splittings of nearly 4 MHz at g3 = 1.59 and less than 1 MHz at g1 = 1.94. In the presence of molybdate, ESEEM spectra of D2O-exchanged samples reveal a resonance at the 2H Larmor frequency, with no evidence of spectral components due to strongly coupled deuterons. 1H ENDOR studies of the uteroferrin-molybdate complex show at least seven pairs of lines, mirrored about the 1H Larmor frequency, of which one pair becomes attenuated in amplitude upon deuteration. The active site thus remains accessible to solvent in the presence of molybdate.  相似文献   
10.
Using fluorescence microscopy, we have observed moving DNA molecules in solution and analyzed the "higher-order" structure in a quantitative manner. It was found that EB (ethidium bromide), an intercalator, has the effect to increase the persistent length. In other words, EB expands DNA. Whereas, DAPI (4',6-diamidino-2-phenylindole), a minor groove binding drug, decreases the persistent length. It is demonstrated that the direct observation of DNA molecules with fluorescence microscopy is quite useful to study the interaction of various chemical compounds with DNA molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号