首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   310篇
  免费   26篇
  2021年   3篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   6篇
  2015年   15篇
  2014年   12篇
  2013年   12篇
  2012年   17篇
  2011年   18篇
  2010年   11篇
  2009年   12篇
  2008年   14篇
  2007年   14篇
  2006年   10篇
  2005年   18篇
  2004年   17篇
  2003年   6篇
  2002年   9篇
  2001年   9篇
  2000年   18篇
  1999年   6篇
  1998年   9篇
  1997年   4篇
  1996年   4篇
  1995年   5篇
  1994年   2篇
  1992年   6篇
  1990年   2篇
  1989年   7篇
  1988年   2篇
  1987年   2篇
  1986年   5篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   6篇
  1980年   2篇
  1977年   2篇
  1974年   2篇
  1968年   2篇
  1965年   2篇
  1934年   1篇
  1933年   1篇
  1932年   1篇
  1927年   2篇
  1925年   2篇
  1924年   1篇
  1923年   3篇
排序方式: 共有336条查询结果,搜索用时 15 毫秒
1.
We have examined the phylogenetic distribution of two t-specific markers among representatives of various taxa belonging to the genus Mus. The centromeric TCP-1a marker (a testicular protein variant specific for all t-haplotypes so far studied) has also been apparently detected in several non-t representatives of the Mus IVA, Mus IVB, and probably M. cervicolor species. By contrast, a t-specific restriction- fragment-length polymorphism allele (RFLP) of the telomeric alpha- globin pseudogene DNA marker alpha-psi-4 was found only in animals belonging to the M. musculus-complex species either bearing genuine t- haplotypes or, like the M. m. bactrianus specimen studied here, likely to do so. This t-specific alpha-psi-4 RFLP allele was found to be as divergent from the RFLP alleles of the latter, non-t, taxonomical groups as it is from Mus 4A, Mus 4B, or M. spretus ones. These results suggest the presence of t-haplotypes and of t-specific markers in populations other than those belonging to the M. m. domesticus and M. m. musculus subspecies, implying a possible origin for t-haplotypes prior to the radiation of the most recent offshoot of the Mus genus (i.e., the spretus/domesticus divergence), some 1-3 Myr ago.   相似文献   
2.
The intracellular compartments of chondrocytes involved in the synthesis and processing of type II procollagen and chondroitin sulfate proteoglycan (CSPG) monomer were investigated using simultaneous double immunofluorescence and lectin localization reactions. Type II procollagen was distributed in vesicles throughout the cytoplasm, whereas intracellular precursors of CSPG monomer were accumulated in the perinuclear cytoplasm. In this study, cytoplasmic vesicles that stained intensely with antibodies directed against CSPG monomer but did not react with type II collagen antibodies, also were observed. A monoclonal antibody, 5-D-4, that recognizes keratan sulfate determinants was used to identify the Golgi complex (the site of keratan sulfate chain elongation). Staining with 5-D-4 was restricted to the perinuclear cytoplasm. The vesicles outside the perinuclear cytoplasm that stained intensely with antibodies to CSPG monomer did not react with 5-D-4. Fluorescent lectins were used to characterize further subcellular compartments. Concanavalin A, which reacts with mannose-rich oligosaccharides, did not stain the perinuclear region, but it did stain vesicles throughout the rest of the cytoplasm. Because mannose oligosaccharides are added cotranslationally, the stained vesicles throughout the cytoplasm presumably correspond to the rough endoplasmic reticulum. Wheat germ agglutinin, which recognizes N-acetyl-D-glucosamine and sialic acid (carbohydrates added in the Golgi), stained exclusively the perinuclear cytoplasm. By several criteria (staining with the monoclonal antibody 5-D-4 and with wheat germ agglutinin), the perinuclear cytoplasm seems to correspond to the Golgi complex. The cytoplasmic vesicles that react with anti-CSPG monomer and not with anti-type II collagen contain precursors of CSPG monomer not yet modified by Golgi-mediated oligosaccharide additions (because they are not stained with wheat germ agglutinin or with the anti-keratan sulfate antibody); these vesicles may have a unique function in the processing of CSPG.  相似文献   
3.
4.
S. D. Harris  J. L. Morrell    J. E. Hamer 《Genetics》1994,136(2):517-532
Filamentous fungi undergo cytokinesis by forming crosswalls termed septa. Here, we describe the genetic and physiological controls governing septation in Aspergillus nidulans. Germinating conidia do not form septa until the completion of their third nuclear division. The first septum is invariantly positioned at the basal end of the germ tube. Block-and-release experiments of nuclear division with benomyl or hydroxyurea, and analysis of various nuclear division mutants demonstrated that septum formation is dependent upon the third mitotic division. Block-and-release experiments with cytochalasin A and the localization of actin in germlings by indirect immunofluorescence showed that actin participated in septum formation. In addition to being concentrated at the growing hyphal tips, a band of actin was also apparent at the site of septum formation. Previous genetic analysis in A. nidulans identified four genes involved in septation (sepA-D). We have screened a new collection of temperature sensitive (ts) mutants of A. nidulans for strains that failed to form septa at the restrictive temperature but were able to complete early nuclear divisions. We identified five new genes designated sepE, G, H, I and J, along with one additional allele of a previously identified septation gene. On the basis of temperature shift experiments, nuclear counts and cell morphology, we sorted these cytokinesis mutants into three phenotypic classes. Interestingly, one class of mutants fails to form septa and fails to progress past the third nuclear division. This class of mutants suggests the existence of a regulatory mechanism in A. nidulans that ensures the continuation of nuclear division following the initiation of cytokinesis.  相似文献   
5.
Aromatase, the enzyme responsible for the conversion of testosterone to estradiol, is found in the rat brain and is present in regions of the preoptic area, hypothalamus, and limbic system. Gonadal steroid hormones regulate aromatase activity levels in many brain regions, but not all. Using in situ hybridization, we examined the distribution of aromatase mRNA in the adult male forebrain, as well as the levels of aromatase mRNA in the brains of males and females, and the regulation by gonadal steroid hormones. In the adult male, many heavily labelled cells were found in the encapsulated bed nucleus of the stria terminalis (BNST), the medial preoptic nucleus (MPN), the ventro-medial nucleus (VMN), the medial amygdala (mAMY) and the cortical amygdala (CoAMY). The regional distribution of aromatase mRNA was similar in males and females, but males tended to have a greater number of aromatase mRNA-expressing cells in each region compared to females. Aromatase mRNA levels in the BNST, MPN, VMN and mAMY tended to be lower in castrated males than in intact males, whereas aromatase mRNA levels were unaltered by castration in the CoAMY. Further analysis of individual cells expressing aromatase mRNA suggests that aromatase mRNA may be regulated by steroid hormones differentially in specific populations of cells in regions where enzyme activity levels are steroid-hormone-dependent.  相似文献   
6.
Purified pyrophosphate: fructose 6-phosphate 1-phosphotransferase (EC 2.7.1.90) was used to measure the inorganic pyrophosphate in unfractionated extracts of tissues of Pisum sativum L. The fructose 1,6-bisphosphate produced by the above enzyme was measured by coupling to NADH oxidation via aldolase (EC 4.1.2.13), triosephosphate isomerase (EC 5.3.1.1) and glycerol-3-phosphate dehydrogenase (EC 1.1.1.8). Amounts of pyrophosphate as low as 1 nmol could be measured. The contents of pyrophosphate in the developing embryo of pea, and in the apical 2 cm of the roots, were appreciable; 9.4 and 8.9 nmol g-1 fresh weight, respectively. The possibility that pyrophosphate acts in vivo as an energy source for pyrophosphate: fructose 6-phosphate 1-phosphotransferase and for UDPglucose pyrophosphorylase (EC 2.7.7.9) is considered.  相似文献   
7.
Motile extracts have been prepared from Dictyostelium discoideum by homogenization and differential centrifugation at 4 degrees C in a stabilization solution (60). These extracts gelled on warming to 25 degrees Celsius and contracted in response to micromolar Ca++ or a pH in excess of 7.0. Optimal gelation occurred in a solution containing 2.5 mM ethylene glycol-bis (β-aminoethyl ether)N,N,N',N'-tetraacetate (EGTA), 2.5 mM piperazine-N-N'-bis [2-ethane sulfonic acid] (PIPES), 1 mM MgC1(2), 1 mM ATP, and 20 mM KCI at ph 7.0 (relaxation solution), while micromolar levels of Ca++ inhibited gelation. Conditions that solated the gel elicited contraction of extracts containing myosin. This was true regardless of whether chemical (micromolar Ca++, pH >7.0, cytochalasin B, elevated concentrations of KCI, MgC1(2), and sucrose) or physical (pressure, mechanical stress, and cold) means were used to induce solation. Myosin was definitely required for contraction. During Ca++-or pH-elicited contraction: (a) actin, myosin, and a 95,000-dalton polypeptide were concentrated in the contracted extract; (b) the gelation activity was recovered in the material sqeezed out the contracting extract;(c) electron microscopy demonstrated that the number of free, recognizable F-actin filaments increased; (d) the actomyosin MgATPase activity was stimulated by 4- to 10-fold. In the absense of myosin the Dictyostelium extract did not contract, while gelation proceeded normally. During solation of the gel in the absense of myosin: (a) electron microscopy demonstrated that the number of free, recognizable F- actin filaments increased; (b) solation-dependent contraction of the extract and the Ca++-stimulated MgATPase activity were reconstituted by adding puried Dictyostelium myosin. Actin purified from the Dictyostelium extract did not gel (at 2 mg/ml), while low concentrations of actin (0.7-2 mg/ml) that contained several contaminating components underwent rapid Ca++ regulated gelation. These results indicated : (a) gelation in Dictyostelium extracts involves a specific Ca++-sensitive interaction between actin and several other components; (b) myosin is an absolute requirement for contraction of the extract; (c) actin-myosin interactions capable of producing force for movement are prevented in the gel, while solation of the gel by either physical or chemical means results in the release of F-actin capable of interaction with myosin and subsequent contraction. The effectiveness of physical agents in producting contraction suggests that the regulation of contraction by the gel is structural in nature.  相似文献   
8.
Two filamentous fungi, the white-rot fungus Trametes versicolor and the soil fungus and potential biocontrol organism Trichoderma harzianum, have been grown in pure and mixed cultures on low-N (0.4 mM) and high-N (4 mM) defined synthetic media to determine the activities of selected wood-degrading enzymes such as cellobiase, cellulase, laccase, and peroxidases. Growth characteristics and enzyme activities were examined for potential correlations. Such correlations would allow the use of simple enzyme assays for measuring biomass development and would facilitate predictions about competitiveness of species in mixed fungal cultures. Our results show that while laccase and Poly Red-478 peroxidase activities indicate survival of the decay fungus, none of the monitored extracellular enzymes can serve as a quantitative indicator for biomass accumulation. As expected, the level of available nitrogen affected the production of the enzymes monitored: in low-N media, specific cellobiase, specific cellulase, and peroxidase activities were enhanced, while laccase activities were reduced. Most importantly, laccase activities of Trametes versicolor, and to a smaller extent, cellobiase activities of both fungi, were significantly induced in mixed cultures of Trametes versicolor and Trichoderma harzianum.  相似文献   
9.
A case of spontaneous endometriosis was diagnosed in the pigtailed macaque (Macaca nemestrina nemestrina) with the aid of high-field (2.35 T), T2-weighted (TE50), C1H2-suppressed, oblique nuclear magnetic resonance imaging (MRI). Postmortem histology was obtained. A variety of endometriotic lesions was seen with MRI, including extrauterine hyperintense apparently cystic regions, extrauterine hypointense regions apparently associated with intracellular paramagnetic iron proteins, and an enlarged myometrium exhibiting adenomyosis foci.  相似文献   
10.
The observation that increased muscular activity leads to muscle hypertrophy is well known, but identification of the biochemical and physiological mechanisms by which this occurs remains an important problem. Experiments have been described (5, 6) which suggest that creatine, an end product of contraction, is involved in the control of contractile protein synthesis in differentiating skeletal muscle cells and may be the chemical signal coupling increased muscular activity and the increased muscular mass. During contraction, the creatine concentration in muscle transiently increases as creatine phosphate is hydrolyzed to regenerate ATP. In isometric contraction in skeletal muscle for example, Edwards and colleagues (3) have found that nearly all of the creatine phosphate is hydrolyzed. In this case, the creatine concentration is increased about twofold, and it is this transient change in creatine concentration which is postulated to lead to increased contractile protein synthesis. If creatine is found in several intracellular compartments, as suggested by Lee and Vissher (7), local changes in concentration may be greater then twofold. A specific effect on contractile protein synthesis seems reasonable in light of the work of Rabinowitz (13) and of Page et al. (11), among others, showing disproportionate accumulation of myofibrillar and mitochondrial proteins in response to work-induced hypertrophy and thyroxin-stimulated growth. Previous experiments (5, 6) have shown that skeletal muscles cells which have differentiated in vitro or in vivo synthesize myosin heavy-chain and actin, the major myofibrillar polypeptides, faster when supplied creatine in vitro. The stimulation is specific for contractile protein synthesis since neither the rate of myosin turnover nor the rates of synthesis of noncontractile protein and DNA are affected by creatine. The experiments reported in this communication were undertaken to test whether creatine selectively stimulates contractile protein synthesis in heart as it does in skeletal muscle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号