首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2020年   1篇
  2014年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2006年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1968年   1篇
排序方式: 共有10条查询结果,搜索用时 46 毫秒
1
1.
Transgenic Research - Chloroplast transformation has many potential advantages for the production of recombinant proteins in plants. However, it has been reported that chloroplast expression of...  相似文献   
2.
Human papillomavirus (HPV) is the causal agent of cervical cancer, one of the most common causes of death in women worldwide, and its E7 antigen is the major candidate for a therapeutic vaccine. The large scale production of E7 by molecular farming that would lead to the development of a safe and inexpensive vaccine is impaired by its low accumulation level in the plant cell. To enhance antigen production in the plastids, two alternative strategies were carried out: the expression of E7 as a translational fusion to β-glucuronidase enzyme and redirection of E7 into the thylakoid lumen. The use of the β-glucuronidase as a partner protein turned out to be a successful strategy, antigen expression levels were enhanced between 30 and 40 times relative to unfused E7. Moreover, best accumulation, albeit at a high metabolic cost that compromised biomass production, was obtained redirecting E7 into the thylakoid lumen by the incorporation of the N-terminal transit peptide, Str. Following this approach lumenal E7 production exceeded the stromal by two orders of magnitude. Our results highlight the relevance of exploring different strategies to improve recombinant protein stability for certain transgenes in order to exploit potential advantages of recombinant protein accumulation in chloroplasts.  相似文献   
3.
Human epididymal sperm protein ARP, a member of the cysteine-rich secretory proteins (CRISP) family, exhibits significant homology with rat epididymal protein DE, a candidate molecule for mediating sperm-egg fusion in rodents. The aim of this study was to investigate the involvement of ARP in human gamete fusion. Sequential extraction of proteins from ejaculated human sperm revealed the existence of a population of ARP that is tightly associated with the sperm surface and thus, potentially capable of participating in gamete interaction. Exposure of capacitated human sperm to a polyclonal antibody against recombinant ARP (anti-ARP) produced a significant and concentration-dependent inhibition in the ability of human sperm to penetrate zona-free hamster eggs. This inhibition was not due to a deleterious effect on the gametes because anti-ARP affected neither sperm viability or motility, nor egg penetrability. The antibody did not inhibit the occurrence of spontaneous or Ca(2+) ionophore-induced acrosome reaction, nor did it inhibit the ability of sperm to bind to the oolema, supporting a specific inhibition of the antibody at the sperm-egg fusion level. As a relevant evidence for a role of ARP in gamete fusion, the existence of complementary sites for this protein on the surface of human eggs was investigated. Experiments in which zona-free human oocytes discarded from in vitro fertilization programs were exposed to ARP, fixed, and subjected to indirect immunofluorescence revealed the presence of specific ARP-binding sites on the entire surface of the human egg, in agreement with the fusogenic properties of the human oolema. Together, these results strongly support the participation of ARP in the sperm-egg fusion process, suggesting that this protein would be the functional homologue of DE in humans.  相似文献   
4.
Rat sperm epididymal glycoprotein DE belongs to the cysteine-rich secretory protein (CRISP) family and participates in sperm-egg fusion through its binding to complementary sites on the egg surface. To investigate the molecular mechanisms underlying the role of DE in gamete fusion, in the present work we expressed DE in a prokaryotic system, and examined the relevance of carbohydrates and disulfide bonds for the biological activity of the protein. Immunofluorescence and sperm-egg fusion assays carried out in the presence of recombinant DE (recDE) revealed that this protein exhibits the ability to bind to the DE-egg binding sites and to inhibit gamete fusion, as does native DE (nDE). Comparison of the proteins indicated, however, that the inhibitory ability of recDE was significantly lower than that of nDE. This difference would not be due to the lack of carbohydrates in the bacterially expressed protein because enzymatically deglycosylated nDE was as able as the untreated protein to inhibit gamete fusion. To examine whether disulfide bridges are involved in DE activity, the presence of sulfhydryls in nDE and recDE was evaluated by the biotin-maleimide technique. Results indicated that, unlike nDE, in which all cysteines are involved in disulfide bonds, recDE contains free thiol groups. Subsequent experiments showed that reduction of nDE with dithiothreitol significantly decreased the ability of the protein to inhibit gamete fusion. Together, these results indicate that whereas carbohydrates do not have a role in DE-mediated gamete fusion, disulfide bridges are required for full biological activity of the protein. To our knowledge, this is the first study reporting the relevance of structural components for the function of a CRISP member.  相似文献   
5.
The first member of the cysteine-rich secretory protein (CRISP) family was described by our laboratory in the rat epididymis, and it is known as DE or CRISP-1. Since then, numerous CRISPs exhibiting a high amino acid sequence similarity have been identified in animals, plants and fungi, although their functions remain largely unknown. CRISP-1 proteins are candidates to mediate gamete fusion in the rat, mouse and human through their binding to complementary sites on the egg surface. To elucidate the molecular mechanisms underlying CRISP-1 function, in the present work, deletion mutants of protein DE were generated and examined for their ability to bind to the rat egg and interfere with gamete fusion. Results revealed that the egg-binding ability of DE resides within a 45-amino acid N-terminal region containing the two motifs of the CRISP family named Signature 1 and Signature 2. Subsequent assays using synthetic peptides and other CRISPs support that the egg-binding site of DE falls in the 12-amino-acid region corresponding to Signature 2. The interesting finding that the binding site of DE resides in an evolutionarily conserved region of the molecule provides novel information on the molecular mechanisms underlying CRISP-1 function in gamete fusion with important implications on the structure-function relationship of other members of the widely distributed CRISP family.  相似文献   
6.
Chloroplast transformation has an extraordinary potential for antigen production in plants because of the capacity to accumulate high levels of recombinant proteins and increased biosafety due to maternal plastid inheritance in most crops. In this article, we evaluate tobacco chloroplasts transformation for the production of a highly immunogenic epitope containing amino acid residues 135–160 of the structural protein VP1 of the foot and mouth disease virus (FMDV). To increase the accumulation levels, the peptide was expressed as a fusion protein with the β-glucuronidase reporter gene (uidA). The recombinant protein represented the 51% of the total soluble proteins in mature leaves, a level higher than those of the Rubisco large subunit, the most abundant protein in the leaf of a wild-type plant. Despite this high accumulation of heterologous protein, the transplastomic plants and wild-type tobacco were phenotypically indistinguishable. The FMDV epitope expressed in transplastomic plants was immunogenic in mice. These results show that transplastomic tobacco express efficiently the recombinant protein, and we conclude that this technology allows the production of large quantities of immunogenic proteins.  相似文献   
7.
Plastid genome transformation offers an attractive methodology for transgene expression in plants, but for potato, only expression of gfp transgene (besides the selective gene aadA) has been published. We report here successful expression of β-glucuronidase in transplastomic Solanum tuberosum (var. Desiree) plants, with accumulation levels for the recombinant protein of up to 41% of total soluble protein in mature leaves. To our knowledge, this is the highest expression level reported for a heterologous protein in S. tuberosum. Accumulation of the recombinant protein in soil-grown minitubers was very low, as described in previous reports. Interestingly, microtubers developed in vitro showed higher accumulation of β-glucuronidase. As light exposure during their development could be the trigger for this high accumulation, we analyzed the effect of light on β-glucuronidase accumulation in transplastomic tubers. Exposure to light for 8 days increased β-glucuronidase accumulation in soil-grown tubers, acting as a light-inducible expression system for recombinant protein accumulation in tuber plastids. In this paper we show that plastid transformation in potato allows the highest recombinant protein accumulation in foliar tissue described so far for this food crop. We also demonstrate that in tubers high accumulation is possible and depends on light exposure. Because tubers have many advantages as protein storage organs, these results could lead to new recombinant protein production schemes based on potato.  相似文献   
8.
Rat epididymal glycoprotein DE associates with the dorsal region of the sperm head during sperm maturation, migrates to the equatorial segment (ES) with the acrosome reaction (AR), and is involved in gamete membrane fusion. In the present study we examined the association of DE with the sperm surface and the relationship of this interaction with the behavior and function of the protein. Cloning and sequencing of DE revealed a lack of hydrophobic domains and the presence of 16 cysteine residues in the molecule. Experiments in which cauda epididymal sperm were subjected to different extraction procedures indicated that while most of the protein is removable from sperm by mild ionic strength, a low amount of DE, resistant to even 2 M NaCl, can be completely extracted by agents that remove integral proteins. However, the lack of hydrophobic domains in the molecule and the failure of DE to interact with liposomes, does not support a direct insertion of the protein into the lipid bilayer. These results, and the complete extraction of the tightly bound protein by dithiothreitol, suggest that this population would correspond to a peripheral protein bound to a membrane component by strong noncovalent interactions that involve disulfide bonds. While ELISA experiments showed that no protein could be extracted by NaCl from capacitated sperm, indirect immunofluorescence studies revealed the ability of the NaCl-resistant protein to migrate to the ES. Together, these results support the existence of two populations of DE: a major, loosely bound population that is released during capacitation, and a minor strongly bound population that remains after capacitation, migrates to the ES with the AR, and thus would correspond to the one with a role in gamete fusion.  相似文献   
9.
10.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号