首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2022年   1篇
  2021年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
BioControl - Blackberry (Rubus glaucus Benth.) is affected by several diseases, such as grey mould (Botrytis cinerea Pers.), downy mildew (Peronospora sp.) and anthracnose (Colletotrichum sp.),...  相似文献   
2.

Fusarium oxysporum Schlecht. (Hypocreales: Nectriaceae) is one of the most devastating plant pathogens worldwide, causing vascular wilt in several crops. Management of this disease primarily relies on chemical fungicides and resistant cultivars in high value crops. However, due to the limited efficacy of these methods, alternative control methods are needed. Biological control is a sustainable, safe, and effective alternative, but the use of a single biological control agent (BCA) usually has inconsistent results. The consistency of biocontrol could be enhanced using microbial consortia. In this context, the aim of this work was to select an effective microbial consortium against vascular wilt in cape gooseberry (Physalis peruviana L.) caused by Fusarium oxysporum f. sp. physali, from a mixture of four strains of Trichoderma spp. Pers. (Hypocreales: Hypocraceae) and Bacillus velezensis (Bacillales: Bacillaceae) Bs006. The calculated synergy factor was used as a selection criterion. Then the selected consortium was evaluated in the field and compared to carbendazim. The Trichoderma virens Gl006 and B. velezensis Bs006 consortium showed synergistic activity against vascular wilt under greenhouse and field conditions and efficacy similar to chemical control. These results suggest that Gl006 and Bs006 have a higher potential in controlling Fusarium wilt in cape gooseberry when applied as a consortium compared to separate, single strains.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号