首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   2篇
  2020年   1篇
  2005年   1篇
  2004年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The role of phosphorylation events on the activation and modulation of the osmosensitive (3)H-taurine release (OTR) was examined in cultured cerebellar granule neurons (CGN) stimulated with 30% hyposmotic solutions. OTR was not decreased when [Ca(2+)](i) rise evoked by hyposmolarity was prevented by EGTA-AM (50 microM) or depleted by treatment with 1 microM ionomycin in Ca(2+)-free medium. Accordingly, OTR was not inhibited by Ca(2+)-dependent signaling events. The calmodulin (CAM) blocker W-7 (50 microM) potentiated OTR while the Ca(2+)/CAM kinase blocker KN-93 (10 microM) was without effect. Blockade of PKC by H-7, H-8 (50 microM) and G?6976 (1 microM), as well as activation by phorbol myristate acetate (PMA) (100 nM) did not influence OTR, but chronic treatment to down regulate PKC decreased it by 30%. Forskolin (20 microM) and 8-BrcAMP (10 microM) did not change OTR. Protein tyrosine phosphorylation seems to be of crucial importance in the activation and modulation of OTR, as it was markedly inhibited (90%) by tyrphostine A23 (50 microM) and potentiated by the tyrosine phosphatase inhibitor ortho-vanadate (100 microM). The PI3 kinase blocker wortmannin 100 nM essentially abolished OTR but LY294002 (10-100 microM) was without effect. This difference may be accounted for PI3K isoforms in neurons with different sensitivity to the blockers. Alternatively, the effect of wortmannin may be exerted not in PI3 kinase but instead on phospholipases, which are also sensitive to this blocker. The hyposmotic stimulus induced activation of Erk1/Erk2, but blockade of this effect by PD 98059 (50 microM) only marginally decreased OTR suggesting that the Erk1/Erk2 is an epiphenomenon, not directly involved in OTR activation.  相似文献   
2.
Abstract: Hyposmotic swelling-induced changes in intracellular Ca2+ concentration ([Ca2+]i) and their influence on regulatory volume decrease (RVD) were examined in rat cultured suspended cerebellar astrocytes. Hyposmotic media (50 or 30%) evoked an immediate rise in [Ca2+]i from 117 nM to a mean peak increase of 386 (50%) and 220 nM (30%), followed by a maintained plateau phase. Ca2+ influx through the plasmalemma as well as release from internal stores contributed to this osmosensitive [Ca2+]i elevation. Omission of external Ca2+ or addition of Cd2+, Mn2+, or Gd3+ did not reduce RVD, although it was decreased by La3+ (0.1–1 mM). Verapamil did not affect either the swelling-evoked [Ca2+]i or RVD. Maneuvers that deplete endoplasmic reticulum (ER) Ca2+ stores, such as treatment (in Ca2+-free medium) with 0.2 µM thapsigargin (Tg), 10 µM 2,5-di-tert-butylhydroquinone, 1 µM ionomycin, or 100 µM ATP abolished the increase in [Ca2+]i but did not affect RVD. However, prolonged exposure to 1 µM Tg blocked RVD regardless of ER Ca2+ content or cytosolic Ca2+ levels. Ryanodine (up to 100 µM) and caffeine (10 mM) did not modify [Ca2+]i or RVD. BAPTA-acetoxymethyl ester (20 µM) abolished [Ca2+]i elevation without affecting RVD, but at higher concentrations BAPTA prevented cell swelling and blocked RVD. We conclude that the osmosensitive [Ca2+]i rise occurs as a consequence of increased Ca2+ permeability of plasma and organelle membranes, but it appears not relevant as a transduction signal for RVD in rat cultured cerebellar astrocytes.  相似文献   
3.
The role of the phospholemman (PLM) on the efflux of taurine and chloride induced by swelling was studied in HEK293 cells overexpressing stable transfected PLM. PLM, a substrate for protein kinases C and A, is a protein that induces an anion current in Xenopus oocytes and forms taurine-selective channels in lipid bilayers. Taurine contributes as an osmolyte to regulatory volume decrease (RVD) and is highly permeable through PLM channels in bilayers. In PLM-overexpressing cells the process of RVD was more rapid and efficient (75%) than in control cells (44%). Also, [(3)H]taurine and (125)I efflux induced by hyposmolarity were markedly increased (30-100%) in two subclones of cells overexpressing PLM. This increased efflux was sensitive to the Cl channel blockers DDF, NPPB and DIDS. Acute treatment of control cells with isoproterenol and norepinephrine induced a significant potentiation (50-60%) of [(3)H]taurine release induced by hyposmolarity. In PLM-overexpressing cells the potentiation by these drugs was higher (100%). Insulin induced also an increase in [(3)H]taurine release, but only in PLM-overexpressing cells (50%). These results indicate that PLM may play a role in the RVD and that its phosphorylation may have a physiological significance during this process. The mechanisms involved in this process could include the activation of PLM itself as channel or the modulation of other preexisting channels.  相似文献   
4.
Dynein is a critical mitotic motor whose inhibition causes defects in spindle pole organization and separation, chromosome congression or segregation, and anaphase spindle elongation, but results differ in different systems. We evaluated the functions of the dynein-dynactin complex by using RNA interference (RNAi)-mediated depletion of distinct subunits in Drosophila S2 cells. We observed a striking detachment of centrosomes from spindles, an increase in spindle length, and a loss of spindle pole focus. RNAi depletion of Ncd, another minus-end motor, produced disorganized spindles consisting of multiple disconnected mini-spindles, a different phenotype consistent with distinct pathways of spindle pole organization. Two candidate dynein-dependent spindle pole organizers also were investigated. RNAi depletion of the abnormal spindle protein, Asp, which localizes to focused poles of control spindles, produced a severe loss of spindle pole focus, whereas depletion of the pole-associated microtubule depolymerase KLP10A increased spindle microtubule density. Depletion of either protein produced long spindles. After RNAi depletion of dynein-dynactin, we observed subtle but significant mislocalization of KLP10A and Asp, suggesting that dynein-dynactin, Asp, and KLP10A have complex interdependent functions in spindle pole focusing and centrosome attachment. These results extend recent findings from Xenopus extracts to Drosophila cultured cells and suggest that common pathways contribute to spindle pole organization and length determination.  相似文献   
5.
Mitosis requires the concerted activities of multiple microtubule (MT)-based motor proteins. Here we examined the contribution of the chromokinesin, KLP3A, to mitotic spindle morphogenesis and chromosome movements in Drosophila embryos and cultured S2 cells. By immunofluorescence, KLP3A associates with nonfibrous punctae that concentrate in nuclei and display MT-dependent associations with spindles. These punctae concentrate in indistinct domains associated with chromosomes and central spindles and form distinct bands associated with telophase midbodies. The functional disruption of KLP3A by antibodies or dominant negative proteins in embryos, or by RNA interference (RNAi) in S2 cells, does not block mitosis but produces defects in mitotic spindles. Time-lapse confocal observations of mitosis in living embryos reveal that KLP3A inhibition disrupts the organization of interpolar (ip) MTs and produces short spindles. Kinetic analysis suggests that KLP3A contributes to spindle pole separation during the prometaphase-to-metaphase transition (when it antagonizes Ncd) and anaphase B, to normal rates of chromatid motility during anaphase A, and to the proper spacing of daughter nuclei during telophase. We propose that KLP3A acts on MTs associated with chromosome arms and the central spindle to organize ipMT bundles, to drive spindle pole separation and to facilitate chromatid motility.  相似文献   
6.
The role of phospholemman (PLM) in taurine and Cl(-) efflux elicited by 30% hyposmotic solution was studied in cultured cerebellar astrocytes with reduced PLM expression by antisense oligonucleotide (AO) treatment. PLM, a substrate for protein kinases (PK) C and A, is a protein that increases an anion current in Xenopus oocytes and forms taurine-selective channels in lipid bilayers. Taurine contributes as an osmolyte to regulatory volume decrease (RVD) and is highly permeable through PLM channels in bilayers. Two antisense oligonucleotides (AO1 and AO2) effectively decreased the expression of the PLM protein by 40% and 30%, respectively, and markedly reduced [(3)H]taurine efflux by 67% and 62%. AO treatment also decreased the osmosensitive release of Cl(-), followed as (125)I. The inhibition of Cl(-) efflux (23% for AO1 and 13% for AO2) was notably lower than for [(3)H]taurine. The contribution of PKC and PKA in the function of PLM was also evaluated in astrocytes. Pharmacological activation or inhibition of PKC and PKA revealed that the osmosensitive taurine efflux is essentially PKC-independent while (125)I efflux is reduced by the PKC blockers H-7 (21%) and G?6983 (41%). The PKA activator forskolin and dbcAMP increased taurine efflux by 66-70% and (125)I efflux by 21-45%. Norepinephrine increased the osmosensitive taurine efflux at about the same extent as dbcAMP and forskolin, and this was reduced by PKA blockers. These results suggest that PLM plays a role in RVD in astrocytes by predominantly influencing taurine fluxes, which are modulated by PKA but not PKC.  相似文献   
7.
8.
Molecular Biology Reports - Orexins-A (OrxA) and -B (OrxB) neuropeptides are synthesized by a group of neurons located in the lateral hypothalamus and adjacent perifornical area, which send their...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号