首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   6篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   6篇
  2011年   6篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1985年   1篇
  1982年   1篇
  1978年   2篇
  1977年   2篇
  1974年   2篇
  1973年   2篇
  1966年   1篇
排序方式: 共有60条查询结果,搜索用时 31 毫秒
1.
The cyclic decapeptide antibiotic tyrocidine is produced by Bacillus brevis ATCC 8185 on an enzyme complex comprising three peptide synthetases, TycA, TycB, and TycC (tyrocidine synthetases 1, 2, and 3), via the nonribosomal pathway. However, previous molecular characterization of the tyrocidine synthetase-encoding operon was restricted to tycA, the gene that encodes the first one-module-bearing peptide synthetase. Here, we report the cloning and sequencing of the entire tyrocidine biosynthesis operon (39.5 kb) containing the tycA, tycB, and tycC genes. As deduced from the sequence data, TycB (404,562 Da) consists of three modules, including an epimerization domain, whereas TycC (723,577 Da) is composed of six modules and harbors a putative thioesterase domain at its C-terminal end. Each module incorporates one amino acid into the peptide product and can be further subdivided into domains responsible for substrate adenylation, thiolation, condensation, and epimerization (optional). We defined, cloned, and expressed in Escherichia coli five internal adenylation domains of TycB and TycC. Soluble His6-tagged proteins, ranging from 536 to 559 amino acids, were affinity purified and found to be active by amino acid-dependent ATP-PPi exchange assay. The detected amino acid specificities of the investigated domains manifested the colinear arrangement of the peptide product with the respective module in the corresponding peptide synthetases and explain the production of the four known naturally occurring tyrocidine variants. The Km values of the investigated adenylation domains for their amino acid substrates were found to be comparable to those published for undissected wild-type enzymes. These findings strongly support the functional integrities of single domains within multifunctional peptide synthetases. Directly downstream of the 3' end of the tycC gene, and probably transcribed in the tyrocidine operon, two tandem ABC transporters, which may be involved in conferring resistance against tyrocidine, and a putative thioesterase were found.  相似文献   
2.
The Drosophila melanogaster gene flightless-I, involved in gastrulation and muscle degeneration, has Caenorhabditis elegans and human homologues. In these highly conserved genes, two previously known gene families have been brought together, families encoding the actin- binding proteins related to gelsolin and the leucine-rich-repeat (LRR) group of proteins involved in protein-protein interactions. Both these gene families exhibit characteristics of molecular changes involving replication slippage and exon shuffling. Phylogenetic analyses of 19 amino acid sequences of 6 related protein types indicate that actin- associated proteins related to gelsolin are monophyletic to a common ancestor and include flightless proteins. Conversely, comparison of 24 amino acid sequences of LRR proteins including the flightless proteins indicates that flightless proteins are members of a structurally related subgroup. Included in the flightless cluster are human and mouse rsp-1 proteins involved in suppressing v-Ras transformation of cells and the membrane-associated yeast (Saccharomyces cerevisae) adenylate cyclase whose analogous LRRs are required for interaction with Ras proteins. There is a strong possibility that ligands for this group could be related and that flightless may have a similar role in Ras signal transduction. It is hypothesized that an ancestral monomeric gelsolin precursor protein has undergone at least four independent gene reorganization events to account for the structural diversity of the extant family of gelsolin-related proteins and that gene duplication and exon shuffling events occurred prior to or at the beginning of multicellular life, resulting in the evolution of some members of the family soon after the appearance of actin-type proteins.   相似文献   
3.
Mg(2+) at an optimal concentration of 2mM (ph 6.5) induces large increases (up to 30 percent) in the optical density of bovine heart mitochondria incubated under conditions of low ionic strength (< approx. 0.01). The increases are associated with aggregation (sticking together) of the inner membranes and are little affected by changes in the energy status of the mitochondria. Virtually all of a number of other polyvalent cations tested and Ag(+) induce increases in mitochondrial optical density similar to those induced by Mg(2+), their approximate order of concentration effectiveness in respect to Mg(2+) being: La(3+) > Pb(2+) = Cu(2+) > Cd(2+) > Zn(2+) > Ag(+) > Mn(2+) > Ca(2+) > Mg(2+). With the exception of Mg(2+), all of these cations appear to induce swelling of the mitochondria concomitant with inner membrane aggregation. The inhibitors of the adenine nucleotide transport reaction carboxyatratyloside and bongkrekic acid are capable of preventing and reversing Mg(2+)-induced aggregation at the same low concentration required for complete inhibition of phosphorylating respiration, suggesting that they inhibit the aggregation by binding to the adenine nucleotide carrier. The findings are interpreted to indicate (a) that the inner mitochondrial membrane is normally prevented from aggregating by virtue of its net negative outer surface change, (b) that the cations induce the membrane to aggregate by binding at its outer surface, decreasing the net negative charge, and (c) that carboxyatractyloside and bongkrekic acid inhibit the aggregation by binding to the outer surface of the membrane, increasing the net negative charge.  相似文献   
4.
Protein trans-splicing by split inteins holds great potential for the chemical modification and semisynthesis of proteins. However, the structural requirements of the extein sequences immediately flanking the intein are only poorly understood. This knowledge is of particular importance for protein labeling, when synthetic moieties are to be attached to the protein of interest as seamlessly as possible. Using the semisynthetic Ssp DnaB intein both in form of its wild-type sequence and its evolved M86 mutant, we systematically varied the sequence upstream of the short synthetic IntN fragment using both proteinogenic amino acids and unnatural building blocks. We could show for the wild-type variant that the native N-extein sequence could be reduced to the glycine residue at the (?1) position directly flanking the intein without significant loss of activity. The glycine at this position is strongly preferred over building blocks containing a phenyl group or extended alkyl chain adjacent to the scissile amide bond of the N-terminal splice junction. Despite their negative effects on the splicing yields, these unnatural substrates were well processed in the N–S acyl shift to form the respective thioesters and did not result in an increased decoupling of the asparagine cyclization step at the C-terminal splicing junction. Therefore, the transesterification step appeared to be the bottleneck of the protein splicing pathway. The fluorophore 7-hydroxycoumarinyl-4-acetic acid as a minimal N-extein was efficiently ligated to the model protein, in particular with the M86 mutant, probably because of its higher resemblance to glycine with an aliphatic c-α carbon atom at the (?1) position. This finding indicates a way for the virtually traceless labeling of proteins without inserting extra flanking residues. Due to its overall higher activity, the M86 mutant appears most promising for many protein labeling and chemical modification schemes using the split intein approach.  相似文献   
5.
Rates and patterns of evolution in partial sequences of five mitochondrial genes (cytochrome b, ATPase 6, NADH dehydrogenase subunit 5, tRNA(Glu), and the control region) were compared among taxa in the passerine bird genera Fringilla and Carduelis. Rates of divergence do not vary significantly among genes, even in comparisons with the control region. Rate variation among lineages is significant only for the control region and NADH dehydrogenase subunit 5, and patterns of variation are consistent with the expectations of neutral theory. Base composition is biased in all genes but is stationary among lineages, and there is evidence for directional mutation pressure only in the control region. Despite these similarities, patterns of substitution differ among genes, consistent with alternative regimes of selective constraint. Rates of nonsynonymous substitution are higher in NADH dehydrogenase subunit 5 than in other protein-coding genes, and transitions exist in elevated proportions relative to transversions. Transitions appear to accumulate linearly with time in tRNA(Glu), and despite exhibiting the highest overall rate of divergence among species, there are no transversional changes in this gene. Finally, for resolving phylogenetic relationships among Fringilla taxa, the combined protein-coding data are broadly similar to those of the control region in terms of phylogenetic informativeness and statistical support.   相似文献   
6.
Inteins excise themselves out of precursor proteins by the protein splicing reaction and have emerged as valuable protein engineering tools in numerous and diverse biotechnological applications. Split inteins have recently attracted particular interest because of the opportunities associated with generating a protein from two separate polypeptides and with trans-cleavage applications made possible by split intein mutants. However, natural split inteins are rare and differ greatly in their usefulness with regard to the achievable rates and yields. Here we report the first functional characterization of new split inteins previously identified by bioinformatics from metagenomic sources. The N- and C-terminal fragments of the four inteins gp41-1, gp41-8, NrdJ-1, and IMPDH-1 were prepared as fusion constructs with model proteins. Upon incubation of complementary pairs, we observed trans-splicing reactions with unprecedented rates and yields for all four inteins. Furthermore, no side reactions were detectable, and the precursor constructs were consumed virtually quantitatively. The rate for the gp41-1 intein, the most active intein on all accounts, was k = 1.8 ± 0.5 × 10(-1) s(-1), which is ~10-fold faster than the rate reported for the Npu DnaE intein and gives rise to completed reactions within 20-30 s. No cross-reactivity in exogenous combinations was observed. Using C1A mutants, all inteins were efficient in the C-terminal cleavage reaction, albeit at lower rates. C-terminal cleavage could be performed under a wide range of reaction conditions and also in the absence of native extein residues flanking the intein. Thus, these inteins hold great potential for splicing and cleavage applications.  相似文献   
7.
8.
9.

Background

Toll like receptors (TLR) play the central role in the recognition of pathogen associated molecular patterns (PAMPs). Mutations in the TLR1, TLR2 and TLR4 genes may change the ability to recognize PAMPs and cause altered responsiveness to the bacterial pathogens.

Results

The study presents association between TLR gene mutations and increased susceptibility to Mycobacterium avium subsp. paratuberculosis (MAP) infection. Novel mutations in TLR genes (TLR1- Ser150Gly and Val220Met; TLR2 – Phe670Leu) were statistically correlated with the hindrance in recognition of MAP legends. This correlation was confirmed subsequently by measuring the expression levels of cytokines (IL-4, IL-8, IL-10, IL-12 and IFN-γ) in the mutant and wild type moDCs (mocyte derived dendritic cells) after challenge with MAP cell lysate or LPS. Further in silico analysis of the TLR1 and TLR4 ectodomains (ECD) revealed the polymorphic nature of the central ECD and irregularities in the central LRR (leucine rich repeat) motifs.

Conclusion

The most critical positions that may alter the pathogen recognition ability of TLR were: the 9th amino acid position in LRR motif (TLR1–LRR10) and 4th residue downstream to LRR domain (exta-LRR region of TLR4). The study describes novel mutations in the TLRs and presents their association with the MAP infection.  相似文献   
10.
Modular peptide synthetases, which act as the protein templates for the synthesis of a large number of peptide antibiotics and siderophores, hold great potential for the development of novel compounds. Recently, significant progress has been made towards understanding their molecular architecture and substrate specificity. The first crystal structure of a peptide synthetase has been solved, and the enzymes responsible for post-translational modification of peptide synthetases have recently been discovered. These will allow addressing important yet poorly understood mechanistic aspects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号