首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   2篇
  2022年   1篇
  2021年   2篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   2篇
  2011年   7篇
  2010年   2篇
  2009年   2篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
The transmembrane receptor Patched regulates several developmental processes in both invertebrates and vertebrates. In vertebrates, Patched also acts as a tumor suppressor. The Patched pathway normally operates by negatively regulating Smoothened, a G-protein-coupled receptor; binding of Hedgehog ligand to Patched relieves this negative interaction and allows signaling by Smoothened. We show that Ptc regulates Drosophila head development by promoting cell proliferation in the eye-antennal disc. During head morphogenesis, Patched positively interacts with Smoothened, which leads to the activation of Activin type I receptor Baboon and stimulation of cell proliferation in the eye-antennal disc. Thus, loss of Ptc or Smoothened activity affects cell proliferation in the eye-antennal disc and results in adult head capsule defects. Similarly, reducing the dose of smoothened in a patched background enhances the head defects. Consistent with these results, gain-of-function Hedgehog interferes with the activation of Baboon by Patched and Smoothened, leading to a similar head capsule defect. Expression of an activated form of Baboon in the patched domain in a patched mutant background completely rescues the head defects. These results provide insight into head morphogenesis, a process we know very little about, and reveal an unexpected non-canonical positive signaling pathway in which Patched and Smoothened function to promote cell proliferation as opposed to repressing it.  相似文献   
2.
Zhu Z  Bhat KM 《Mechanisms of development》2011,128(7-10):483-495
The Hem/Kette/Nap1 protein is involved in many biological processes. We have recently reported that Hem is required for the normal migration of neurons in the Drosophila embryo. In this paper, we report that Hem regulates the asymmetric division of neural precursor cells. We find that a well-studied Hem/Kette mutant allele produces at least two main, but possibly more, phenotypic classes of mutant embryos, and these phenotypes correlate with variable levels of maternal wild type Hem protein in the developing embryo. While the weaker class exhibits weak axon guidance defect and the mis-migration of neurons, the stronger class causes severe axon guidance defects, mis-migration of neurons and symmetric division of ganglion mother cells (GMC) of the RP2/sib lineage. We also show that the basis for the loss of asymmetric division is due to non-localization of Inscuteable and Numb in GMC-1. A non-asymmetric Numb segregates to both daughter cells of GMC-1, which then prevents Notch signaling from specifying a sib fate. This causes both cells to adopt an RP2 fate. Furthermore, loss of function for Abelson tyrosine kinase also causes loss of asymmetric localization of Inscuteable and Numb and symmetric division of GMC-1, the loss of function for WAVE has a very weakly penetrant loss of asymmetry defect. These results define another role for Hem/Kette/Nap1 in a neural precursor cell during neurogenesis.  相似文献   
3.
Modern radiotherapy machines with refinements in planning software and image-guidance apparatuses have made stereotactic body radiotherapy (SBRT) more widely available as an effective tool in the management of spine metastases. In conventional palliative radiotherapy, the aim has traditionally been pain relief and short-term local control. In contrast, SBRT aims to deliver an ablative dose to enhance local control, with a smaller number of fractions while sparing the organs at risk (OAR), especially the spinal cord. Recently, trials have asserted the role of spine SBRT as an effective modality for durable local control, in addition to achieving pain relief. The quality of evidence for spine SBRT data is maturing, while prospective published trials on re-irradiation SBRT in spine remain sparse. The purpose of the present case report is to share the challenges faced while salvaging a dorsal spine metastasis and ablating a new right adrenal metastatic lesion in proximity of the transplanted liver.  相似文献   
4.
The relatively simple central nervous system (CNS) of the Drosophila embryo provides a useful model system for investigating the mechanisms that generate and pattern complex nervous systems. Central to the generation of different types of neurons by precursor neuroblasts is the initial specification of neuroblast identity and the Drosophila segment polarity genes, genes that specify regions within a segment or repeating unit of the Drosophila embryo, have emerged recently as significant players in this process. During neurogenesis the segment polarity genes are expressed in the neuroectodermal cells from which neuroblasts delaminate and they continue to be expressed in neuroblasts and their progeny. Loss-of-function mutations in these genes lead to a failure in the formation of neuroblasts and/or specification of neuroblast identity. Results from several recent studies suggest that regulatory interactions between segment polarity genes during neurogenesis lead to an increase in the number of neuroblasts and specification of different identities to neuroblasts within a population of cells. BioEssays 21:472–485, 1999. © 1999 John Wiley & Sons, Inc.  相似文献   
5.
6.
7.
In the nervous system, neurons form in different regions, then they migrate and occupy specific positions. We have previously shown that RP2/sib, a well-studied neuronal pair in the Drosophila ventral nerve cord (VNC), has a complex migration route. Here, we show that the Hem protein, via the WAVE complex, regulates migration of GMC-1 and its progeny RP2 neuron. In Hem or WAVE mutants, RP2 neuron either abnormally migrates, crossing the midline from one hemisegment to the contralateral hemisegment, or does not migrate at al and fail to send out its axon projection. We report that Hem regulates neuronal migration through stabilizing WAVE. Since Hem and WAVE normally form a complex, our data argues that in the absence of Hem, WAVE, which is presumably no longer in a complex, becomes susceptible to degradation. We also find that Abelson tyrosine kinase affects RP2 migration in a similar manner as Hem and WAVE, and appears to operate via WAVE. However, while Abl negatively regulates the levels of WAVE, it regulates migration via regulating the activity of WAVE. Our results also show that during the degradation of WAVE, Hem function is opposite to that of and downstream of Abl.  相似文献   
8.
Chitosan and its derivatives for gene delivery   总被引:2,自引:0,他引:2  
Gene delivery can particularly be used for the treatment of diseases by the insertion of genetic materials (DNA and RNA) into mammalian cells either to express new proteins or to prevent the expression of existing proteins. Chitosan, a natural polymer is nontoxic, biocompatible, and biodegradable and it is used as a support material for gene delivery. However, practical use of chitosan has been mainly limited to its unmodified forms, and thus modified chitosans can be used for the wide range of biomedical applications including the interaction and intracellular delivery of genetic materials. In this context, this review paper provides the recent development on chitosan derivatives available for gene delivery.  相似文献   
9.
Guiding axon growth cones towards their targets is a fundamental process that occurs in a developing nervous system. Several major signaling systems are involved in axon-guidance, and disruption of these systems causes axon-guidance defects. However, the specific role of the environment in which axons navigate in regulating axon-guidance has not been examined in detail. In Drosophila, the ventral nerve cord is divided into segments, and half-segments and the precursor neuroblasts are formed in rows and columns in individual half-segments. The row-wise expression of segment-polarity genes within the neuroectoderm provides the initial row-wise identity to neuroblasts. Here, we show that in embryos mutant for the gene midline, which encodes a T-box DNA binding protein, row-2 neuroblasts and their neuroectoderm adopt a row-5 identity. This reiteration of row-5 ultimately creates a non-permissive zone or a barrier, which prevents the extension of interneuronal longitudinal tracts along their normal anterior-posterior path. While we do not know the nature of the barrier, the axon tracts either stall when they reach this region or project across the midline or towards the periphery along this zone. Previously, we had shown that midline ensures ancestry-dependent fate specification in a neuronal lineage. These results provide the molecular basis for the axon guidance defects in midline mutants and the significance of proper specification of the environment to axon-guidance. These results also reveal the importance of segmental polarity in guiding axons from one segment to the next, and a link between establishment of broad segmental identity and axon guidance.  相似文献   
10.
Hafer N  Xu S  Bhat KM  Schedl P 《Genetics》2011,189(3):907-921
Cytoplasmic polyadenylation element binding (CPEB) proteins bind mRNAs to regulate their localization and translation. While the first CPEBs discovered were germline specific, subsequent studies indicate that CPEBs also function in many somatic tissues including the nervous system. Drosophila has two CPEB family members. One of these, orb, plays a key role in the establishment of polarity axes in the developing egg and early embryo, but has no known somatic functions or expression outside of the germline. Here we characterize the other Drosophila CPEB, orb2. Unlike orb, orb2 mRNA and protein are found throughout development in many different somatic tissues. While orb2 mRNA and protein of maternal origin are distributed uniformly in early embryos, this pattern changes as development proceeds and by midembryogenesis the highest levels are found in the CNS and PNS. In the embryonic CNS, Orb2 appears to be concentrated in cell bodies and mostly absent from the longitudinal and commissural axon tracts. In contrast, in the adult brain, the protein is seen in axonal and dendritic terminals. Lethal effects are observed for both RNAi knockdowns and orb2 mutant alleles while surviving adults display locomotion and behavioral defects. We also show that orb2 funtions in asymmetric division of stem cells and precursor cells during the development of the embryonic nervous system and mesoderm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号