首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   96篇
  2022年   5篇
  2021年   10篇
  2020年   3篇
  2016年   8篇
  2015年   19篇
  2014年   15篇
  2013年   25篇
  2012年   26篇
  2011年   22篇
  2010年   13篇
  2009年   13篇
  2008年   10篇
  2007年   12篇
  2006年   4篇
  2005年   20篇
  2004年   12篇
  2003年   11篇
  2002年   17篇
  2001年   12篇
  2000年   6篇
  1999年   11篇
  1998年   11篇
  1997年   5篇
  1996年   8篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1990年   4篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1977年   3篇
排序方式: 共有318条查询结果,搜索用时 62 毫秒
1.
To explore the roles played by specific human immunodeficiency virus type 1 (HIV-1) genes in determining the in vivo replicative capacity of AIDS viruses, we have examined the replication kinetics and virus-specific immune responses in rhesus monkeys following infection with two chimeric simian/human immunodeficiency viruses (SHIVs). These viruses were composed of simian immunodeficiency virus SIVmac239 expressing HIV-1 env and the associated auxiliary HIV-1 genes tat, vpu, and rep. Virus replication was assessed during primary infection of rhesus monkeys by measuring plasma SIVmac p27 levels and by quantifying virus replication in lymph nodes using in situ hybridization. SHIV-HXBc2, which expresses the HIV-1 env of a T-cell-tropic, laboratory-adapted strain of HIV-1 (HXBc2), replicated well in rhesus monkey peripheral blood leukocytes (PBL) in vitro but replicated only to low levels when inoculated in rhesus monkeys. In contrast, SHIV-89.6 was constructed with the HIV-1 env gene of a T-cell- and macrophage-tropic clone of a patient isolate of HIV-1 (89.6). This virus replicated to a lower level in monkey PBL in vitro but replicated to a higher degree in monkeys during primary infection. Moreover, monkeys infected with SHIV-89.6 developed an inversion in the PBL CD4/CD8 ratio coincident with the clearance of primary viremia. The differences in the in vivo consequences of infection by these two SHIVs could not be explained by differences in the immune responses elicited by these viruses, since infected animals had comparable type-specific neutralizing antibody titers, proliferative responses to recombinant HIV-1 gp120, and virus-specific cytolytic effector T-cell responses. With the demonstration that a chimeric SHIV can replicate to high levels during primary infection in rhesus monkeys, this model can now be used to define genetic determinants of HIV-1 pathogenicity.  相似文献   
2.
Twelve rhesus monkeys were vaccinated with SIVmac316 delta nef (lacking nef sequences), and 12 were vaccinated with SIVmac239 delta3 (lacking nef, vpr, and upstream sequences in U3). SIVmac316 and SIVmac239 differ by only eight amino acids in the envelope; these changes render SIVmac316 highly competent for replication in macrophages. Seventeen of the animals developed persistent infections with the vaccine viruses. Seven of the 24 vaccinated animals, however, developed infections that were apparently transient in nature. Six of these seven yielded virus from peripheral blood when tested at weeks 2 and/or 3, three of the seven had transient antibody responses, but none of the seven had persisting antibody responses. The 24 monkeys were challenged in groups of four with 10 rhesus monkey infectious doses of wild-type, pathogenic SIVmac251 at weeks 8, 20, and 79 following receipt of vaccine. None of the seven with apparently transient infections with vaccine virus were protected upon subsequent challenge. Analysis of cell-associated viral loads, CD4+ cell counts, and viral gene sequences present in peripheral blood in the remainder of the monkeys following challenge allowed a number of conclusions. (i) There was a trend toward increased protection with length of time of vaccination. (ii) Solid vaccine protection was achieved by 79 weeks with the highly attenuated SIV239 delta3. (iii) Solid long-term protection was achieved in at least two animals in the absence of complete sterilizing immunity. (iv) Genetic backbone appeared to influence protective capacity; animals vaccinated with SIV239 delta3 were better protected than animals receiving SIV316 delta nef. This better protection correlated with increased levels of the replicating vaccine strain. (v) The titer of virus-neutralizing activity in serum on the day of challenge correlated with protection when measured against a primary stock of SIVmac251 but not when measured against a laboratory-passaged stock. The level of binding antibodies to whole virus by enzyme-linked immunosorbent assay also correlated with protection.  相似文献   
3.
The dynamics of plasma viremia were explored in a group of 12 simian immunodeficiency virus (SIV)-infected rhesus macaques (Macaca mulatta) that had received prior immunization with either nonrecombinant or trivalent (gag-pol, env) SIV-recombinant vaccinia viruses. Three distinct patterns of viral replication observed during and following primary viremia accounted for significant differences in survival times. High-level primary plasma viremia with subsequently increasing viremia was associated with rapid progression to AIDS (n = 2). A high-level primary plasma virus load with a transient decline and subsequent progressive increase in viremia in the post-acute phase of infection was associated with progression to AIDS within a year (n = 6). Low levels of primary plasma viremia followed by sustained restriction of virus replication were associated with maintenance of normal lymphocyte subsets and intact lymphoid architecture (n = 4), reminiscent of the profile observed in human immunodeficiency virus type 1-infected long-term nonprogressors. Three of four macaques that showed this pattern had been immunized with an SIV recombinant derived from the attenuated vaccinia virus, modified vaccinia virus Ankara. These data link the dynamics and extent of virus replication to disease course and suggest that sustained suppression of virus promotes long-term, asymptomatic survival of SIV-infected macaques. These findings also suggest that vaccine modulation of host immunity may have profound beneficial effects on the subsequent disease course, even if sterilizing immunity is not achieved.  相似文献   
4.
The potential of the simian immunodeficiency virus (SIV) variable 2 (V2) domain as an effective region to boost SIV-neutralizing antibodies and to protect against live SIV challenge was tested in rhesus macaques. In this study, two rhesus macaques were primed with vaccinia virus recombinants expressing the surface glycoprotein gp140 of SIVmac and were given booster injections with the SIVmac V2 domain presented by a highly immunogenic carrier, the hepatitis B surface antigen (HBsAg). The two vaccinated macaques exhibited SIV-neutralizing antibodies after primer injections that were enhanced by the V2/HBsAg injections. Part of these SIV-neutralizing antibodies were directed specifically to the V2 region, as shown by neutralization-blocking experiments. However, despite having consistent SIV-neutralizing antibody titers, animals were not protected against homologous challenge with BK28, the molecular clone of SIVmac251. No SIV envelope-specific cellular cytotoxic response was detected throughout the immunization protocol, suggesting that neutralizing antibodies directed to SIV envelope gp140 and especially to the V2 domain were unable on their own to protect against SIV challenge. Furthermore, the vaccinees seemed to have higher viral loads than control animals after challenge, raising the question of whether neutralizing antibodies induced by vaccination and directed to the SIV envelope selected viral escape mutants, as shown previously in SIV-infected macaques. This mechanism is certainly worthy of intensive investigation and raises some concern for SIV envelope-targeted immunization.  相似文献   
5.
The ability of imidazole acetic acid (IA) to substitute for cAMP was demonstrated by use of a series of strains carrying a lesion in the cya structural gene. The substitution of IA for cAMP was specific for the L-arabinose operon in that this compound was ineffective in substituting for cAMP in the lactose or maltose catabolic systems. The cAMP receptor protein (CRP) and the araC gene product were necessary for the IA mediated induction of the L-arabinose system.  相似文献   
6.
Defining the specificities of the anti-human immunodeficiency virus type 1 (HIV-1) envelope antibodies able to mediate broad heterologous neutralization will assist in identifying targets for an HIV-1 vaccine. We screened 70 plasmas from chronically HIV-1-infected individuals for neutralization breadth. Of these, 16 (23%) were found to neutralize 80% or more of the viruses tested. Anti-CD4 binding site (CD4bs) antibodies were found in almost all plasmas independent of their neutralization breadth, but they mainly mediated neutralization of the laboratory strain HxB2 with little effect on the primary virus, Du151. Adsorption with Du151 monomeric gp120 reduced neutralizing activity to some extent in most plasma samples when tested against the matched virus, although these antibodies did not always confer cross-neutralization. For one plasma, this activity was mapped to a site overlapping the CD4-induced (CD4i) epitope and CD4bs. Anti-membrane-proximal external region (MPER) (r = 0.69; P < 0.001) and anti-CD4i (r = 0.49; P < 0.001) antibody titers were found to be correlated with the neutralization breadth. These anti-MPER antibodies were not 4E10- or 2F5-like but spanned the 4E10 epitope. Furthermore, we found that anti-cardiolipin antibodies were correlated with the neutralization breadth (r = 0.67; P < 0.001) and anti-MPER antibodies (r = 0.6; P < 0.001). Our study suggests that more than one epitope on the envelope glycoprotein is involved in the cross-reactive neutralization elicited during natural HIV-1 infection, many of which are yet to be determined, and that polyreactive antibodies are possibly involved in this phenomenon.The generation of an antibody response capable of neutralizing a broad range of viruses remains an important goal of human immunodeficiency virus type 1 (HIV-1) vaccine development. Despite multiple efforts in the design of immunogens capable of inducing such humoral responses, little progress has been made (18, 20, 39). The sequence variability of the virus, as well as masking mechanisms exhibited by the envelope glycoprotein, has further hindered this pursuit (6, 22). It is known that while the majority of HIV-infected individuals mount a strong neutralization response against their own virus within the first 6 to 12 months of infection, breadth is observed in only a few individuals years later (5, 10, 15, 26, 33, 40, 41). However, very little is known about the specificities of the antibodies that confer this broad cross-neutralization. It is plausible that broadly cross-neutralizing (BCN) plasmas contain antibodies that target conserved regions of the envelope glycoprotein, as exemplified by a number of well-characterized broadly neutralizing monoclonal antibodies (MAbs). The b12 MAb recognizes the CD4 binding site (CD4bs), and 2G12 binds to surface glycans (7, 42, 44, 56). The 447-52D MAb recognizes the V3 loop, and 17b, E51, and 412d bind to CD4-induced (CD4i) epitopes that form part of the coreceptor binding site (13, 21, 51, 54). Finally, the MAbs 2F5, 4E10, and Z13e1 recognize distinct linear sequences in the gp41 membrane-proximal external region (MPER) (36, 57). The targets of these neutralizing MAbs provide a rational starting point for examining the complex nature of polyclonal plasma samples.Several groups have addressed the need to develop methodologies to elucidate the presence of certain neutralizing-antibody specificities (1, 8, 9, 29, 30, 43, 55). A number of these studies reported that the BCN antibodies in plasma can in some cases be adsorbed using gp120 immobilized on beads (1, 9, 29, 30, 43). Furthermore, the activities of some of these anti-gp120 neutralizing antibodies could be mapped to the CD4bs, as the D368R mutant gp120 failed to adsorb them (1, 29, 30, 43).Antibodies to CD4i epitopes are frequently found in HIV-1-infected individuals and are thought to primarily target the coreceptor binding site, which includes the bridging sheet and possibly parts of the V3 region. Decker and colleagues (8) showed that MAbs to HIV-1 CD4i epitopes can neutralize HIV-2 when pretreated with soluble CD4 (sCD4), indicating that the CD4i epitope is highly conserved among different HIV lineages. The poor accessibility of CD4i epitopes, however, has precluded this site from being a major neutralizing-antibody target (24), although a recent study suggested that some of the cross-neutralizing activity in polyclonal sera mapped to a CD4i epitope (30).Another site that has attracted considerable attention as a target for cross-neutralizing antibodies is the MPER, a linear stretch of 34 amino acids in gp41. Anti-MPER antibodies have been detected in the plasma of HIV-infected individuals by using chimeric viruses with HIV-1 MPER grafted into a simian immunodeficiency virus or an HIV-2 envelope glycoprotein (15, 55). These studies concluded that 2F5- and 4E10-like antibodies were rarely found in HIV-1-infected plasmas; however, other specificities within the MPER were recognized by around one-third of HIV-1-infected individuals (15). More recently, 4E10-like and 2F5-like antibodies (30, 43), as well as antibodies to novel epitopes within the MPER (1), have been shown to be responsible for neutralization breadth in a small number of plasma samples. The anti-MPER MAb 4E10 has been shown to react to autoantigens, leading to the suggestion that their rarity in human infection is due to the selective deletion of B cells with these specificities (17, 35). Furthermore, a recent study found an association between anti-MPER and anti-cardiolipin (CL) antibodies, although an association with neutralization was not examined (31).A recent study by Binley and coworkers used an array of methodologies to determine the antibody specificities present in subtype B and subtype C plasma samples with neutralization breadth (1). While antibodies to gp120, some of which mapped to the CD4bs, and to MPER were identified, most of the neutralizing activity in the BCN plasma could not be attributed to any of the known conserved envelope epitopes. Furthermore, it is not clear how common these specificities are among HIV-1-positive plasmas and whether they are only associated with BCN activity.In this study, we investigated a large collection of HIV-1-infected plasmas obtained from the South African National Blood Services. We aimed to determine if there is a relationship between the presence of certain antibody specificities, such as those against CD4i epitopes, MPER, or the CD4bs, and the neutralizing activities present in these plasmas. Furthermore, we evaluated the presence of various autoreactive antibodies and analyzed whether they might be associated with neutralization breadth.  相似文献   
7.
8.
Small biopsy samples are used increasingly to assess the biomarker expression for prognostic information and for monitoring therapeutic responses prior to and during neoadjuvant therapy. The issue of intratumor heterogeneity of expression of biomarkers, however, has raised questions about the validity of the assessment of biomarker expression based on limited tissue samples. We examined immunohistochemically the expression of HER-2neu (p185erbB-2), epidermal growth factor receptor (EGFR), Bcl-2, p53, and proliferating cell nuclear antigen (PCNA) in 30 breast carcinomas using archived, paraffin embedded tissue and determined the extent of intratumor heterogeneity. Each section was divided into four randomly oriented discrete regions, each containing a portion of the infiltrating carcinoma. For each tumor, the entire lesion and four regions were analyzed for the expression of these markers. Scores of both membrane and cytoplasmic staining of HER-2neu and EGFR, scores of cytoplasmic staining of Bcl-2, and scores of nuclear staining of both p53 and PCNA were recorded. The intensity of staining and the proportion of immunostained cells were determined. A semiquantitative immunoscore was calculated by determining the sum of the products of the intensity and corresponding proportion of stained tumor cells. We analyzed both invasive (IDC) and in situ (DCIS) carcinomas. The Wilcoxon signed-rank test was used for paired comparisons between overall and regional immunoscores and between overall and regional percentages of stained cells. Spearman's correlation coefficients were used to assess the level of agreement of overall biomarker expression with each of the regions. Generalized linear models were used to assess overall and pair-wise differences in the absolute values of percent changes between overall and regional expression of biomarkers. For IDCs, there were no statistically significant differences in the expression of the biomarkers in terms of either the percentage of cells staining or the immunoscores when comparing the entire tumor with each region except for the lower EGFR expression of arbitrarily selected region 1 and lower p53 expression of region 1 compared to that of the entire tumor section. For DCIS, there were no statistically significant differences in the expression of the biomarkers between the entire tumor and each region except in PCNA of region 2 compared to that of entire tumor section. Positive correlation of immunoscores was observed between the entire tumor and each region as well as across all four regions for IDC. Similar observations were noted with DCIS except for HER-2neu and PCNA. No statistically significant differences were observed in the absolute values of percent changes of biomarker expression between overall and the four regions for both DCIS and IDC. Therefore, no significant intratumor heterogeneity in the expression of HER-2neu, Bcl-2, and PCNA was observed in IDC. Minor regional variations were observed for EGFR and p53 in IDC. Similarly, no significant regional variation in the expression of markers was observed in DCIS except for PCNA.  相似文献   
9.
Entry of HIV-1 into target cells requires binding of the viral envelope glycoprotein (Env) to cellular receptors and subsequent conformational changes that culminates in fusion of viral and target cell membranes. Recent structural information has revealed that these conformational transitions are regulated by three conserved but potentially flexible layers stacked between the receptor-binding domain (gp120) and the fusion arm (gp41) of Env. We hypothesized that artificial insertion of a covalent bond will ‘snap’ Env into a conformation that is less mobile and stably expose conserved sites. Therefore, we analyzed the interface between these gp120 layers (layers 1, 2 and 3) and identified residues that may form disulfide bonds when substituted with cysteines. We subsequently probed the structures of the resultant mutant gp120 proteins by assaying their binding to a variety of ligands using Surface Plasmon Resonance (SPR) assay. We found that a single disulfide bond strategically inserted between the highly conserved layers 1 and 2 (C65-C115) is able to ‘lock’ gp120 in a CD4 receptor bound conformation (in the absence of CD4), as indicated by the lower dissociation constant (Kd) for the CD4-induced (CD4i) epitope binding 17b antibody. When disulfide-stabilized monomeric (gp120) and trimeric (gp140) Envs were used to immunize rabbits, they were found to elicit a higher proportion of antibodies directed against both CD4i and CD4 binding site epitopes than the wild-type proteins. These results demonstrate that structure-guided stabilization of inter-layer interactions within HIV-1 Env can be used to expose conserved epitopes and potentially overcome the sequence diversity of these molecules.  相似文献   
10.
Kiwifruit (Actinidia spp.) is a recently domesticated fruit crop with several novel-coloured cultivars being developed. Achieving uniform fruit flesh pigmentation in red genotypes is challenging. To investigate the cause of colour variation between fruits, we focused on a red-fleshed Actinidia chinensis var. chinensis genotype. It was hypothesized that carbohydrate supply could be responsible for this variation. Early in fruit development, we imposed high or low (carbon starvation) carbohydrate supplies treatments; carbohydrate import or redistribution was controlled by applying a girdle at the shoot base. Carbon starvation affected fruit development as well as anthocyanin and carbohydrate metabolite concentrations, including the signalling molecule trehalose 6-phosphate. RNA-Seq analysis showed down-regulation of both gene-encoding enzymes in the anthocyanin and carbohydrate biosynthetic pathways. The catalytic trehalose 6-phosphate synthase gene TPS1.1a was down-regulated, whereas putative regulatory TPS7 and TPS11 were strongly up-regulated. Unexpectedly, under carbon starvation MYB10, the anthocyanin pathway regulatory activator was slightly up-regulated, whereas MYB27 was also up-regulated and acts as a repressor. To link these two metabolic pathways, we propose a model where trehalose 6-phosphate and the active repressor MYB27 are involved in sensing the carbon starvation status. This signals the plant to save resources and reduce the production of anthocyanin in fruits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号