首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2018年   1篇
  2014年   2篇
  2013年   1篇
  2010年   1篇
排序方式: 共有5条查询结果,搜索用时 24 毫秒
1
1.
Applied Microbiology and Biotechnology - Distillers’ dried grains with solubles (DDGS) is a low-value agro-industrial by-product, rich in arabinoxylans (AX), which is produced by commercial...  相似文献   
2.
Salp15 is a tick saliva protein that inhibits CD4+ T cell differentiation through its interaction with CD4. The protein inhibits early signaling events during T cell activation and IL-2 production. Because murine Experimental Autoimmune Encephalomyelitis development is mediated by central nervous system-infiltrating CD4+ T cells that are specific for myelin-associated proteins, we sought to determine whether the treatment of mice with Salp15 during EAE induction would prevent the generation of proinflammatory T cell responses and the development of the disease. Surprisingly, Salp15-treated mice developed more severe EAE than control animals. The treatment of EAE-induced mice with the tick saliva protein did not result in increased infiltration of T cells to the central nervous system, indicating that Salp15 had not affected the permeability of the blood-brain barrier. Salp15 treatment did not affect the development of antibody responses against the eliciting peptide or the presence of IFNγ in the sera. The treatment with Salp15 resulted, however, in the increased differentiation of Th17 cells in vivo, as evidenced by higher IL-17 production from PLP139-151-specific CD4+ T cells isolated from the central nervous system and the periphery. In vitro, Salp15 was able to induce the differentiation of Th17 cells in the presence of IL-6 and the absence of TGFβ These results suggest that a conductive milieu for the differentiation of Th17 cells can be achieved by restriction of the production of IL-2 during T cell differentiation, a role that may be performed by TGFβ and other immunosuppressive agents.  相似文献   
3.
We have shown previously that Escherichia coli K92 produces two different capsular polymers known as CA (colanic acid) and PA (polysialic acid) in a thermoregulated manner. The complex Rcs phosphorelay is largely related to the regulation of CA synthesis. Through deletion of rscA and rscB genes, we show that the Rcs system is involved in the regulation of both CA and PA synthesis in E. coli K92. Deletion of either rcsA or rcsB genes resulted in decreased expression of cps (CA biosynthesis cluster) at 19°C and 37°C, but only CA production was reduced at 19°C. Concerning PA, both deletions enhanced its synthesis at 37°C, which does not correlate with the reduced kps (PA biosynthesis cluster) expression observed in the rcsB mutant. Under this condition, expression of the nan operon responsible for PA catabolism was greatly reduced. Although RcsA and RcsB acted as negative regulators of PA synthesis at 37°C, their absence did not reestablish PA expression at low temperatures, despite the deletion of rcsB resulting in enhanced kps expression. Finally, our results revealed that RcsB controlled the expression of several genes (dsrA, rfaH, h-ns and slyA) involved in the thermoregulation of CA and PA synthesis, indicating that RcsB is part of a complex regulatory mechanism governing the surface appearance in E. coli.  相似文献   
4.
5.
In the present study, the efficacy of generally recognised as safe (GRAS) antimicrobial plant metabolites in regulating the growth of Staphylococcus aureus and S. epidermidis was investigated. Thymol, carvacrol and eugenol showed the strongest antibacterial action against these microorganisms, at a subinhibitory concentration (SIC) of ≤ 50 μg ml?1. Genistein, hydroquinone and resveratrol showed antimicrobial effects but with a wide concentration range (SIC = 50–1,000 μg ml?1), while catechin, gallic acid, protocatechuic acid, p-hydroxybenzoic acid and cranberry extract were the most biologically compatible molecules (SIC ≥ 1000 μg ml?1). Genistein, protocatechuic acid, cranberry extract, p-hydroxybenzoic acid and resveratrol also showed anti-biofilm activity against S. aureus, but not against S. epidermidis in which, surprisingly, these metabolites stimulated biofilm formation (between 35% and 1,200%). Binary combinations of cranberry extract and resveratrol with genistein, protocatechuic or p-hydroxibenzoic acid enhanced the stimulatory effect on S. epidermidis biofilm formation and maintained or even increased S. aureus anti-biofilm activity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号