首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  5篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2006年   1篇
  2002年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Cytolysin A (ClyA) is an α-pore forming toxin from pathogenic Escherichia coli (E. coli) and Salmonella enterica. Here, we report that E. coli ClyA assembles into an oligomeric structure in solution in the absence of either bilayer membranes or detergents at physiological temperature. These oligomers can rearrange to create transmembrane pores when in contact with detergents or biological membranes. Intrinsic fluorescence measurements revealed that oligomers adopted an intermediate state found during the transition between monomer and transmembrane pore. These results indicate that the water-soluble oligomer represents a prepore intermediate state. Furthermore, we show that ClyA does not form transmembrane pores on E. coli lipid membranes. Because ClyA is delivered to the target host cell in an oligomeric conformation within outer membrane vesicles (OMVs), our findings suggest ClyA forms a prepore oligomeric structure independently of the lipid membrane within the OMV. The proposed model for ClyA represents a non-classical pathway to attack eukaryotic host cells.  相似文献   
2.
The small intestinal BB Na+/H+ antiporter NHE3 accounts for the majority of intestinal sodium and water absorption. It is highly regulated with both postprandial inhibition and stimulation sequentially occurring. Phosphatidylinositide 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositide 3,4,5-trisphosphate (PI(3,4,5)P3) binding is involved with regulation of multiple transporters. We tested the hypothesis that phosphoinositides bind NHE3 under basal conditions and are necessary for its acute regulation. His6 proteins were made from the NHE3 C-terminal region divided into four parts as follows: F1 (amino acids 475–589), F2 (amino acids 590–667), F3 (amino acids 668–747), and F4 (amino acids 748–832) and purified by a nickel column. Mutations were made in the F1 region of NHE3 and cloned in pet30a and pcDNA3.1 vectors. PI(4,5)P2 and PI(3,4,5)P3 bound only to the NHE3 F1 fusion protein (amino acids 475–589) on liposomal pulldown assays. Mutations were made in the putative lipid binding region of the F1 domain and studied for alterations in lipid binding and Na+/H+ exchange as follows: Y501A/R503A/K505A; F509A/R511A/R512A; R511L/R512L; R520/FR527F; and R551L/R552L. Our results indicate the following. 1) The F1 domain of the NHE3 C terminus has phosphoinositide binding regions. 2) Mutations of these regions alter PI(4,5)P2 and PI(3,4,5)P3 binding and basal NHE3 activity. 3) The magnitude of serum stimulation of NHE3 correlates with PI(4,5)P2 and PI(3,4,5)P3 binding of NHE3. 4) Wortmannin inhibition of PI3K did not correlate with PI(4,5)P2 or PI(3,4,5)P3 binding of NHE3. Two functionally distinct phosphoinositide binding regions (Tyr501–Arg512 and Arg520–Arg552) are present in the NHE3 F1 domain; both regions are important for serum stimulation, but they display differences in phosphoinositide binding, and the latter but not the former alters NHE3 surface expression.  相似文献   
3.
The helix-loop-helix (i.e., EF-hand) Ca(2+) ion binding motif is characteristic of a large family of high-affinity calcium ion binding proteins, including the parvalbumins, oncomodulins and calmodulins. In this work we describe a set of molecular dynamics computations on the major parvalbumin from the silver hake (SHPV-B) and on functional fragments of this protein, consisting of the first four helical regions (the ABCD fragment), and the internal helix-loop- helix region (the CD fragment). In both whole protein and protein fragments (i.e., ABCD and CD fragments), the 9th loop residue in the calcium ion binding site in the CD helix-loop-helix region (the so-called "gateway" position) has been mutated from glutamic acid to aspartic acid. Aspartic acid is one of the most common residues found at the gateway position in other (non-parvalbumin) EF- hand proteins, but has never been found at the gateway position of any parvalbumin. (Interestingly, aspartic acid does occur at the gateway position in the closely related rat and human oncomodulins.) Consistent with experimental observations, the results of our molecular dynamics simulations show that incorporation of aspartic acid at the gateway position is very disruptive to the structural integrity of the calcium ion coordination site in the whole protein. The aspartic acid mutation is somewhat less disruptive to the calcium ion coordination sites in the two parvalbumin fragments (i.e., the ABCD and CD fragments), presumably due to the higher degree of motional freedom allowable in these protein fragments. One problem associated with the E59D whole protein variant is a prohibitively close approach of the aspartate carboxyl group to the CD calcium ion observed in the energy-minimized (pre-molecular dynamics) structure. This steric situation does not emerge during energy-minimization of the wild-type protein. The damage to the structural integrity of the calcium ion coordination site in the whole protein E59D variant is not relieved during the molecular dynamics simulation. In fact, during the course of the 300 picosecond simulation, all of the calcium ion ligands leave the primary coordination sphere. In addition, the conserved hydrogen- bonds (in the short beta-sheet structure) that links the CD site to the symmetry-related EF site (in the non-mutated whole protein) is also somewhat disrupted in the E59D whole protein variant. These results suggest that the Ca(2+) ion binding deficiencies in the CD loop are related, at least in part, to the unique interaction that exists between the paired CD and EF hands in the whole protein. Our theoretical results correlate well with previous studies on engineered EF-hand proteins and with all of our experimental evidence on whole silver hake parvalbumin and enzymatically-generated parvalbumin fragments.  相似文献   
4.
Human cytomegalovirus modulates macroautophagy in two opposite directions. First, HCMV stimulates autophagy during the early stages of infection, as evident by an increase in the number of autophagosomes and a rise in the autophagic flux. This stimulation occurs independently of de novo viral protein synthesis since UV-inactivated HCMV recapitulates the stimulatory effect on macroautophagy. At later time points of infection, HCMV blocks autophagy (M. Chaumorcel, S. Souquere, G. Pierron, P. Codogno, and A. Esclatine, Autophagy 4:1-8, 2008) by a mechanism that requires de novo viral protein expression. Exploration of the mechanisms used by HCMV to block autophagy unveiled a robust increase of the cellular form of Bcl-2 expression. Although this protein has an anti-autophagy effect via its interaction with Beclin 1, it is not responsible for the inhibition induced by HCMV, probably because of its phosphorylation by c-Jun N-terminal kinase. Here we showed that the HCMV TRS1 protein blocks autophagosome biogenesis and that a TRS1 deletion mutant is defective in autophagy inhibition. TRS1 has previously been shown to neutralize the PKR antiviral effector molecule. Although phosphorylation of eIF2α by PKR has been described as a stimulatory signal to induce autophagy, the PKR-binding domain of TRS1 is dispensable to its inhibitory effect. Our results show that TRS1 interacts with Beclin 1 to inhibit autophagy. We mapped the interaction with Beclin 1 to the N-terminal region of TRS1, and we demonstrated that the Beclin 1-binding domain of TRS1 is essential to inhibit autophagy.  相似文献   
5.
Sir2 is an NAD-dependent deacetylase that connects metabolism with longevity in yeast, flies, and worms. Mammals have seven Sir2 homologs (SIRT1-7). We show that SIRT4 is a mitochondrial enzyme that uses NAD to ADP-ribosylate and downregulate glutamate dehydrogenase (GDH) activity. GDH is known to promote the metabolism of glutamate and glutamine, generating ATP, which promotes insulin secretion. Loss of SIRT4 in insulinoma cells activates GDH, thereby upregulating amino acid-stimulated insulin secretion. A similar effect is observed in pancreatic beta cells from mice deficient in SIRT4 or on the dietary regimen of calorie restriction (CR). Furthermore, GDH from SIRT4-deficient or CR mice is insensitive to phosphodiesterase, an enzyme that cleaves ADP-ribose, suggesting the absence of ADP-ribosylation. These results indicate that SIRT4 functions in beta cell mitochondria to repress the activity of GDH by ADP-ribosylation, thereby downregulating insulin secretion in response to amino acids, effects that are alleviated during CR.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号