首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   4篇
  2020年   1篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2011年   5篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1992年   2篇
  1991年   1篇
  1989年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
  1967年   2篇
  1966年   1篇
排序方式: 共有43条查询结果,搜索用时 125 毫秒
1.
Cutaneous ATP release plays an important role in both epidermal stratification and chronic pain, but little is known about ATP release mechanisms in keratinocytes that comprise the epidermis. In this study, we analyzed ATP release from cultured human neonatal keratinocytes briefly exposed to air, a process previously demonstrated to trigger ATP release from these cells. We show that exposing keratinocytes to air by removing media for 15 seconds causes a robust, long-lasting ATP release. This air-stimulated ATP release was increased in calcium differentiated cultures which showed a corresponding increase in connexin 43 mRNA, a major component of keratinocyte hemichannels. The known connexin hemichannel inhibitors 1-octanol and carbenoxolone both significantly reduced air-stimulated ATP release, as did two drugs traditionally used as ABC transporter inhibitors (glibenclamide and verapamil). These same 4 inhibitors also prevented an increase in the uptake of a connexin permeable dye induced by air exposure, confirming that connexin hemichannels are open during air-stimulated ATP release. In contrast, activity of the MDR1 ABC transporter was reduced by air exposure and the drugs that inhibited air-stimulated ATP release had differential effects on this transporter. These results indicate that air exposure elicits non-vesicular release of ATP from keratinocytes through connexin hemichannels and that drugs used to target connexin hemichannels and ABC transporters may cross-inhibit. Connexins represent a novel, peripheral target for the treatment of chronic pain and dermatological disease.  相似文献   
2.
3.
Volume-dependent anion channels permeable forCl and amino acids arethought to play an important role in the homeostasis of cell volume.Astrocytes are the main cell type in the mammalian brain showing volumeperturbations under physiological and pathophysiological conditions. Weinvestigated the involvement of tyrosine phosphorylation in hyposmoticmedium-induced[3H]taurine andD-[3H]aspartaterelease from primary astrocyte cultures. The tyrosine kinase inhibitorstyrphostin 23 and tyrphostin A51 partially suppressed thevolume-dependent release of[3H]taurine in adose-dependent manner with half-maximal effects at ~40 and 1 µM,respectively. In contrast, the release ofD-[3H]aspartatewas not significantly affected by these agents in the sameconcentration range. The inactive analog tyrphostin 1 hadno significant effect on the release of both amino acids. The dataobtained suggest the existence of at least two volume-dependent anionchannels permeable to amino acids in astrocyte cultures. One of thesechannels is permeable to taurine and is under the control of tyrosinekinase(s). The other is permeable to both taurine and aspartate, butits volume-dependent regulation does not require tyrosine phosphorylation.  相似文献   
4.
Ubiquitously expressed volume-regulated anion channels (VRACs) are activated in response to cell swelling but may also show limited activity in nonswollen cells. VRACs are permeable to inorganic anions and small organic osmolytes, including the amino acids aspartate, glutamate, and taurine. Several recent reports have demonstrated that neurotransmitters or hormones, such as ATP and vasopressin, induce or strongly potentiate astrocytic whole cell Cl currents and amino acid release, which are inhibited by VRAC blockers. In the present study, we explored the intracellular signaling mechanisms mediating the effects of ATP on D-[3H]aspartate release via the putative VRAC pathway in rat primary astrocyte cultures. Cells were exposed to moderate (5%) or substantial (30%) reductions in medium osmolarity. ATP strongly potentiated D-[3H]aspartate release in both moderately swollen and substantially swollen cells. These ATP effects were blocked (80% inhibition) by intracellular Ca2+ chelation with BAPTA-AM, calmodulin inhibitors, or a combination of the inhibitors of protein kinase C (PKC) and calmodulin-dependent kinase II (CaMK II). In contrast, control D-[3H]aspartate release activated by the substantial hyposmotic swelling showed little (25% inhibition) sensitivity to the same pharmacological agents. These data indicate that ATP regulates VRAC activity via two separate Ca2+-sensitive signaling cascades involving PKC and CaMK II and that cell swelling per se activates VRACs via a separate Ca2+/calmodulin-independent signaling mechanism. Ca2+-dependent organic osmolyte release via VRACs may contribute to the physiological functions of these channels in the brain, including astrocyte-to-neuron intercellular communication. volume-regulated anion channels; protein kinase C; calcium/calmodulin-dependent kinase II; glutamate release; neuron-glia communication  相似文献   
5.
Microglia are the resident immune cells of the CNS, which are important for preserving neural tissue functions, but may also contribute to neurodegeneration. Activation of these cells in infection, inflammation, or trauma leads to the release of various toxic molecules, including reactive oxygen species (ROS) and the excitatory amino acid glutamate. In this study, we used an electrophysiologic approach and a d‐[ 3 H] aspartate (glutamate) release assay to explore the ROS‐dependent regulation of glutamate‐permeable volume‐regulated anion channels (VRACs). Exposure of rat microglia to hypo‐osmotic media stimulated Cl? currents and d ‐[3H]aspartate release, both of which were inhibited by the selective VRAC blocker, DCPIB. Exogenously applied H2O2 potently increased swelling‐activated glutamate release. Stimulation of microglia with zymosan triggered production of endogenous ROS and strongly enhanced glutamate release via VRAC in swollen cells. The effects of zymosan were attenuated by the ROS scavenger, MnTMPyP, and by two inhibitors of NADPH oxidase (NOX), diphenyliodonium and thioridazine. However, zymosan‐stimulated glutamate release was insensitive to other NOX blockers, apocynin and HEBSF. This pharmacologic profile pointed to the potential involvement of apocynin‐insensitive NOX4. Using RT‐PCR we confirmed that NOX4 is expressed in rat microglial cells along with NOX1 and NOX2. To check for potential involvement of phagocytic NOX2, we stimulated this isoform using protein kinase C (PKC) activator, phorbol 12‐myristate 13‐acetate or inhibited it with the broad spectrum PKC blocker, Gö6983. Both agents potently modulated endogenous ROS production by NOX2 but not VRAC activity. Taken together, these data suggest that the anion channel VRAC may contribute to microglial glutamate release and that its activity is regulated by endogenous ROS originating from NOX4.  相似文献   
6.
7.
8.
Volume-dependent ATP release andsubsequent activation of purinergic P2Y receptors have been implicatedas an autocrine mechanism triggering activation of volume-regulatedanion channels (VRACs) in hepatoma cells. In the brain ATP is releasedby both neurons and astrocytes and participates in intercellularcommunication. We explored whether ATP triggers or modulates therelease of excitatory amino acid (EAAs) via VRACs in astrocytes inprimary culture. Under basal conditions exogenous ATP (10 µM)activated a small EAA release in 70-80% of the cultures tested.In both moderately (5% reduction of medium osmolarity) andsubstantially (35% reduction of medium osmolarity) swollen astrocytes,exogenous ATP greatly potentiated EAA release. The effects of ATP weremimicked by P2Y agonists and eliminated by P2Y antagonists or the ATPscavenger apyrase. In contrast, the same pharmacological maneuvers didnot inhibit volume-dependent EAA release in the absence of exogenous ATP, ruling out a requirement of autocrine ATP release for VRAC activation. The ATP effect in nonswollen and moderately swollen cellswas eliminated by a 5-10% increase in medium osmolarity or byanion channel blockers but was insensitive to tetanus toxin pretreatment, further supporting VRAC involvement. Our data suggest that in astrocytes ATP does not trigger EAA release itself but actssynergistically with cell swelling. Moderate cell swelling and ATP mayserve as two cooperative signals in bidirectional neuron-astrocytecommunication in vivo.

  相似文献   
9.
Excessive excitatory amino acid (EAA) release in cerebral ischemia is a major mechanism responsible for neuronal damage and death. A substantial fraction of ischemic EAA release occurs via volume-regulated anion channels (VRACs). Hydrogen peroxide (H2O2), which is abundantly produced during ischemia and reperfusion, activates a number of protein kinases critical for VRAC functioning and has recently been reported to activate VRACs. In the present study, we explored the effects of H2O2 on volume-dependent EAA release in cultured astrocytes, measured as the release of preloaded D-[3H]aspartate. 100-1,000 microm H2O2 enhanced swelling-induced EAA release by approximately 2.5-3-fold (EC50 approximately 10 microM). The VRAC blockers ATP, phloretin, and 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) potently inhibited both control swelling-induced and the H2O2-potentiated release, suggesting a role for VRACs. The H2O2-induced component of EAA release was attenuated by the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM) and completely eliminated by the calmodulin antagonists trifluoperazine and W-7 and the Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-93. Inhibitors of tyrosine kinases, protein kinase C, and the myosin light chain kinase were ineffective in blocking the H2O2 response. H2O2 treatment of swollen astrocytes, but not swelling alone, resulted in CaMKII activation that was inhibited by KN-93, as determined by a phospho-Thr286 CaMKII antibody. These data demonstrate that H2O2 strongly up-regulates astrocytic volume-sensitive EAA release via a CaMKII-dependent mechanism and in this way may potently promote pathological EAA release and brain damage in ischemia.  相似文献   
10.
Volume-regulated anion channels (VRACs) are critically important for cell volume homeostasis, and under pathological conditions contribute to neuronal damage via excitatory amino (EAA) release. The precise mechanisms by which brain VRACs are activated and/or modulated remain elusive. In the present work we explored the possible involvement of nitric oxide (NO) and NO-related reactive species in the regulation of VRAC activity and EAA release, using primary astrocyte cultures. The NO donors sodium nitroprusside and spermine NONOate did not affect volume-activated d-[3H]aspartate release. In contrast, the peroxynitrite (ONOO-) donor 3-morpholinosydnomine hydrochloride (SIN-1) increased volume-dependent EAA release by approx. 80-110% under identical conditions. Inhibition of ONOO- formation with superoxide dismutase completely abolished the effects of SIN-1. Both the volume- and SIN-1-induced EAA release were sensitive to the VRAC blockers NPPB and ATP. Further pharmacological analysis ruled out the involvement of cGMP-dependent reactions and modification of sulfhydryl groups in the SIN-1-inducedmodulation of EAA release. The src family tyrosine kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4-d]pyrimidine (PP2), but not its inactive analog PP3, abolished the effects of SIN-1. A broader spectrum tyrosine kinase inhibitor tyrphostin A51, also completely eliminated the SIN-1-induced EAA release. Our data suggest that ONOO- up-regulates VRAC activity via a src tyrosine kinase-dependent mechanism. This modulation may contribute to EAA-mediated neuronal damage in ischemia and other pathological conditions favoring cell swelling and ONOO- production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号