首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2013年   2篇
  1999年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
Purpose

The aquaculture sector is a major contributor to the economic and nutritional security for a number of countries. India’s total seafood exports for the year 2017–2018 accounted for US$ Million 7082. One of the major setbacks in this sector is the frequent outbreaks of diseases often due to bacterial pathogens. Vibriosis is one of the major diseases caused by bacteria of Vibrio spp., causing significant economic loss to the aquaculture sector. The objective of this study was to understand the genetic composition of Vibrio spp.

Methods

Thirty-five complete genomes were downloaded from GenBank comprising seven vibrio species, namely, Vibrio alginolyticus, V. anguillarum, V. campbellii, V. harveyi, V. furnissii, V. parahaemolyticus, and V. vulnificus. Pan-genome analysis was carried out with coding sequences (CDS) generated from all the Vibrio genomes. In addition, genomes were mined for genes coding for toxin-antitoxin systems, antibiotic resistance, genomic islands, and virulence factors.

Results

Results revealed an open pan-genome comprising of 2004 core, 8249 accessory, and 6780 unique genes. Downstream analysis of genomes and the identified unique genes resulted in 312 antibiotic resistance genes, 430 genes coding for toxin and antitoxin systems along with 4802, and 4825 putative virulent genes from genomic island regions and unique gene sets, respectively.

Conclusion

Pan-genome and other downstream analytical procedures followed in this study have the potential to predict strain-specific genes and their association with habitat and pathogenicity.

  相似文献   
3.
4.
HEPNet is an electronic representation of metabolic reactions occurring within human cellular organization focusing on inflow and outflow of the energy currency ATP, GTP and other energy associated moieties. The backbone of HEPNet consists of primary bio-molecules such as carbohydrates, proteins and fats which ultimately constitute the chief source for the synthesis and obliteration of energy currencies in a cell. A series of biochemical pathways and reactions constituting the catabolism and anabolism of various metabolites are portrayed through cellular compartmentalization. The depicted pathways function synchronously toward an overarching goal of producing ATP and other energy associated moieties to bring into play a variety of cellular functions. HEPNet is manually curated with raw data from experiments and is also connected to KEGG and Reactome databases. This model has been validated by simulating it with physiological states like fasting, starvation, exercise and disease conditions like glycaemia, uremia and dihydrolipoamide dehydrogenase deficiency (DLDD). The results clearly indicate that ATP is the master regulator under different metabolic conditions and physiological states. The results also highlight that energy currencies play a minor role. However, the moiety creatine phosphate has a unique character, since it is a ready-made source of phosphoryl groups for the rapid synthesis of ATP from ADP. HEPNet provides a framework for further expanding the network diverse age groups of both the sexes, followed by the understanding of energetics in more complex metabolic pathways that are related to human disorders.  相似文献   
5.
6.
Molecular approaches for designing heat tolerant wheat   总被引:1,自引:0,他引:1  
Global warming is causing changes in temperature rapidly for over two decades. The increased temperature during reproductive phase of plant growth has emerged as a serious problem all over the world. Constant or transitory high temperatures may affect the plant growth and development which may lead to diverse morphological, physiological and biochemical changes in plants ultimately decrease in yield. Genetic approaches leading to improved thermo-tolerance can mitigate the reduction in yield. In this backdrop, several indirect traits or parameters have been developed for identification of heat tolerant plants/lines. The traits like stay green/delayed senescence are reported to contribute toward capability of plants to tolerate heat stress. In addition, understanding of biochemical and molecular basis of thermo-tolerance in combination with genetic approaches like identification and mapping of heat tolerant QTLs will not only assist conventional breeders to develop heat tolerant cultivars but also help molecular biologists to clone and characterize genes associated with heat tolerance, which could be used in genetically modified heat tolerant plants. Therefore, overviews of different strategies for developing heat tolerant wheat are discussed in this review.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号