首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   2篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   4篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2006年   2篇
  2003年   1篇
  1997年   2篇
  1994年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
1.
The development of technologies to promote vascularization of engineered tissue would drive major developments in tissue engineering and regenerative medicine. Recently, we succeeded in fabricating three-dimensional (3D) cell constructs composed of mesenchymal stem cells (MSCs). However, the majority of cells within the constructs underwent necrosis due to a lack of nutrients and oxygen. We hypothesized that incorporation of vascular endothelial cells would improve the cell survival rate and aid in the fabrication of biomimetic bone tissues in vitro. The purpose of this study was to assess the impact of endothelial cells combined with the MSC constructs (MSC/HUVEC constructs) during short- and long-term culture. When human umbilical vein endothelial cells (HUVECs) were incorporated into the cell constructs, cell viability and growth factor production were increased after 7 days. Furthermore, HUVECs were observed to proliferate and self-organize into reticulate porous structures by interacting with the MSCs. After long-term culture, MSC/HUVEC constructs formed abundant mineralized matrices compared with those composed of MSCs alone. Transmission electron microscopy and qualitative analysis revealed that the mineralized matrices comprised porous cancellous bone-like tissues. These results demonstrate that highly biomimetic bone tissue can be fabricated in vitro by 3D MSC constructs incorporated with HUVECs.  相似文献   
2.
The partitioning of apolipoprotein A-I (apoA-I) molecules in plasma between HDL-bound and -unbound states is an integral part of HDL metabolism. We used the surface plasmon resonance (SPR) technique to monitor in real time the reversible binding of apoA-I to HDL. Biotinylated human HDL2 and HDL3 were immobilized on a streptavidin-coated SPR sensor chip, and apoA-I solutions at different concentrations were flowed across the surface. The wild-type (WT) human and mouse apoA-I/HDL interaction involves a two-step process; apoA-I initially binds to HDL with fast association and dissociation rates, followed by a step exhibiting slower kinetics. The isolated N-terminal helix bundle domains of human and mouse apoA-I also exhibit a two-step binding process, consistent with the second slower step involving opening of the helix bundle domain. The results of fluorescence experiments with pyrene-labeled apoA-I are consistent with the N-terminal helix bundle domain interacting with proteins resident on the HDL particle surface. Dissociation constants (Kd) measured for WT human apoA-I interactions with HDL2 and HDL3 are about 10 µM, indicating that the binding is low affinity. This Kd value does not apply to all of the apoA-I molecules on the HDL particle but only to a relatively small, labile pool.Understanding the structure and function of HDL is significant because of the beneficial cardioprotective properties of this lipoprotein (1). The anti-atherogenic effects of HDL arise, in part, from its participation in the reverse cholesterol transport pathway where the principal HDL protein, apolipoprotein A-I (apoA-I), plays a central role (2). As a result, the structure-function relationships of apoA-I have been studied extensively (for reviews, see Refs. 35). Perhaps the most important characteristic of the apoA-I molecule is its ability to bind lipids; this interaction is mediated by the amphipathic α-helices present in the protein molecule (6). ApoA-I binds well to phospholipid (PL)-water interfaces and, under appropriate conditions, can solubilize the PL to create discoidal HDL particles (7, 8). The binding of apoA-I to a PL surface involves a two-step mechanism. First, α-helices in the C-terminal domain of the protein interact with the surface, and, second, the N-terminal helix bundle domain opens to allow more helix-lipid interactions to occur (5, 9). Although the binding of apoA-I to model PL particles has been studied extensively, the binding of apoA-I to HDL particles has not been investigated much because of the difficulty of separating free and bound apoA-I in this system. This lack of information about apoA-I/HDL interactions is significant because the cycling of apoA-I molecules on and off HDL particles occurs during the metabolism of HDL particles (10, 11), in particular to release apoA-I molecules into the preβ-HDL pool (10, 12). This recycling is consistent with the well-established ability of apolipoproteins, such as apoA-I, to exchange spontaneously between different populations of lipoprotein particles (1316) and PL vesicles (17, 18). As a rule, any remodeling event that depletes HDL particles of PL induces particle fusion and dissociation of that fraction of the apoA-I molecules that is in a labile pool (19). At this stage, quantitative understanding of the kinetics of apoA-I interactions with HDL particles is unavailable.Here, we exploit surface plasmon resonance (SPR) to monitor in real time the association and dissociation reactions in the apoA-I/HDL system. SPR has been used to derive quantitative information about the binding of both lipoproteins (20) and apoE (2123) to proteoglycans. As far as the application of SPR to the HDL system is concerned, the binding of several plasma remodeling factors to HDL immobilized on a sensor chip has been investigated successfully (2426). Also, the conformation of apoA-I in HDL was explored by comparing the binding of HDL particles to anti-apoA-I monoclonal antibodies immobilized on an SPR chip (27). We have extended these approaches to study the binding of apoA-I to HDL particles. The results show that apoA-I can bind reversibly and with low affinity to HDL particles by a two-step mechanism.  相似文献   
3.
Embryoid bodies were prepared from mouse embryonic stem cells expressing exogenous EGAM1C to analyze their ability to differentiate toward terminally differentiated cell types. The generation of cardiomyocytes was severely suppressed in Egam1c transfectants without upregulation of Nkx2-5, a crucial gene for cardiomyogenesis. These results indicate that EGAM1C is capable of affecting terminal differentiation in mouse embryonic stem cells.  相似文献   
4.
We do not expect non air-breathing aquatic animals to exhibit positive buoyancy. Sharks, for example, rely on oil-filled livers instead of gas-filled swim bladders to increase their buoyancy, but are nonetheless ubiquitously regarded as either negatively or neutrally buoyant. Deep-sea sharks have particularly large, oil-filled livers, and are believed to be neutrally buoyant in their natural habitat, but this has never been confirmed. To empirically determine the buoyancy status of two species of deep-sea sharks (bluntnose sixgill sharks, Hexanchus griseus, and a prickly shark, Echinorhinus cookei) in their natural habitat, we used accelerometer-magnetometer data loggers to measure their swimming performance. Both species of deep-sea sharks showed similar diel vertical migrations: they swam at depths of 200–300 m at night and deeper than 500 m during the day. Ambient water temperature was around 15°C at 200–300 m but below 7°C at depths greater than 500 m. During vertical movements, all deep-sea sharks showed higher swimming efforts during descent than ascent to maintain a given swimming speed, and were able to glide uphill for extended periods (several minutes), indicating that these deep-sea sharks are in fact positively buoyant in their natural habitats. This positive buoyancy may adaptive for stealthy hunting (i.e. upward gliding to surprise prey from underneath) or may facilitate evening upward migrations when muscle temperatures are coolest, and swimming most sluggish, after spending the day in deep, cold water. Positive buoyancy could potentially be widespread in fish conducting daily vertical migration in deep-sea habitats.  相似文献   
5.
6.
Renal cell carcinoma (RCC) accounts for 80–95 % of kidney tumors, and approximately 30 % of RCC patients have metastatic disease at diagnosis. Conventional chemotherapy is not effective in patients with metastatic RCC (MRCC); therefore, immunotherapy with interferon-α (IFN-α) has been employed to improve survival. However, the response rate of MRCC to IFN-α therapy is low. We previously reported that a signal transducer and activator 3 (STAT3) polymorphism was a useful diagnostic marker to predict the response to IFN-α therapy in patients with MRCC. Therefore, we hypothesized the inhibition of STAT3 in the addition of IFN-α therapy might be useful. Moreover, the blockage of STAT3 itself has been reported to enhance the antitumor effects. However, because IFN-α is thought to elicit its therapeutic effect via enhancement of an antitumor immune response mediated by lymphocytes that can be activated by IFN-α administrations, it is probable that the suppression of STAT3 in vivo relates to autoimmune disorders. In the present study, we found Y-box binding protein-1 (YB-1) was poorly expressed in T lymphocytes, as compared with cancer tissues. YB-1 was reported to have an important effect on the STAT3 pathway. Suppression of STAT3 by YB-1 inhibition did not seem to enhance the potential risk for autoimmune disorders. Moreover, we found sensitivity to IFN-α was increased by YB-1 suppression, and this suppression did not down-regulate IFN-α activation of T lymphocytes.  相似文献   
7.
8.
9.
Exchange protein directly activated by cAMP (EPAC) is a mediator of a cAMP signaling pathway that is independent of protein kinase A. EPAC has two isoforms (EPAC1 and EPAC2) and is a cAMP-dependent guanine nucleotide exchange factor for the small GTPases, Rap1 and Rap2. Recent studies suggest that EPAC1 has both positive and negative influences on cancer and is involved in cell proliferation, apoptosis, migration and metastasis. We report that EPAC1 and EPAC2 expression levels were significantly lower in bladder cancer tissue than in normal bladder tissue. In addition, bladder cancer cell lines showed reduced EPAC1 mRNA expression. Furthermore, EPAC1 overexpression in bladder cancer cell lines induced morphologic changes and markedly suppressed cell migration without affecting cell viability. The overexpressed EPAC1 preferentially localized at cell-cell interfaces. In conclusion, reduced EPAC1 expression in bladder tumors and poor migration of EPAC1-overexpressing cells implicate EPAC1 as an inhibitor of bladder cancer cell migration.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号