首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   13篇
  2019年   2篇
  2018年   1篇
  2017年   4篇
  2016年   5篇
  2015年   4篇
  2014年   4篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2009年   6篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1992年   2篇
  1989年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
  1926年   2篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
1.
Cdc2 and the Regulation of Mitosis: Six Interacting Mcs Genes   总被引:10,自引:2,他引:8       下载免费PDF全文
L. Molz  R. Booher  P. Young    D. Beach 《Genetics》1989,122(4):773-782
A cdc2-3w weel-50 double mutant of fission yeast displays a temperature-sensitive lethal phenotype that is associated with gross abnormalities of chromosome segregation and has been termed mitotic catastrophe. In order to identify new genetic elements that might interact with the cdc2 protein kinase in the regulation of mitosis, we have isolated revertants of the lethal double mutant. The suppressor mutations define six mcs genes (mcs: mitotic catastrophe suppressor) that are not allelic to any of the following mitotic control genes: cdc2, wee 1, cdc13, cdc25, suc1 or nim1. Each mcs mutation is recessive with respect to wild-type in its ability to suppress mitotic catastrophe. None confer a lethal phenotype as a single mutant but few of the mutants are expected to be nulls. A diverse range of genetic interactions between the mcs mutants and other mitotic regulators were uncovered, including the following examples. First, mcs2 cdc2w or mcs6 cdc2w double mutants display a cell cycle defect dependent on the specific wee allele of cdc2. Second, both mcs1 cdc25-22 or mcs4 cdc25-22 double mutants are nonconditionally lethal, even at a temperature normally permissive for cdc25-22. Finally, the characteristic suppression of the cdc25 phenotype by a loss-of-function wee1 mutation is reversed in a mcs3 mutant background. The mcs genes define new mitotic elements that might be activators or substrates of the cdc2 protein kinase.  相似文献   
2.
WhileEscherichia coli is common as a commensal organism in the distal ileum and colon, the presence of colonization factors (CF) on pathogenic strains ofE. coli facilitates attachment of the organism to intestinal receptor molecules in a species- and tissue-specific fashion. After the initial adherence, colonization occurs, and the involvement of additional virulence determinants leads to illness. EnterotoxigenicE. coli (ETEC) is the most extensively studied of the five categories ofE. coli that cause diarrheal disease, and has the greatest impact on health worldwide. ETEC can be isolated from domestic animals and humans. The biochemistry, genetics, epidemiology, antigenic characteristics, and cell and receptor binding properties of ETEC have been extensively described. Another major category, enteropathogenicE. coli (EPEC), has virulence mechanisms, primarily effacement and cytoskeletal rearrangement of intestinal brush borders, that are distinct from ETEC. An EPEC CF receptor has been purified and characterized as a sialidated transmembrane glycoprotein complex directly attached to actin, thereby associating CF-binding with host-cell response. Three, additional categories ofE. coli diarrheal disease, their colonization factors and their host cell receptors are discussed. It appears that biofilms exist in the intestine in a manner similar to oral bacterial biofilms, and thatE. coli is part of these biofilms as both commensals and pathogens.Abbreviations CF colonization factor - CFA Colonization Factor Antigen - CS coli-surface-associated antigen - EAggEC enteroaggregativeE. coli - ECDD E. coli diarrheal disease - EHEC enterohemorrhagicE. coli - EIEC enteroinvasiveE. coli - EPEC enteropathogenicE. coli - ETEC enterotoxigenicE. coli - Gal galactose - GalNAc N-acetyl galactosamine - LT heat-labile toxin - NeuAc N-acetyl neuraminic acid - PCF Putative colonization factor - RBC red blood cells - SLT Shiga-like toxin - ST heat-stable toxin  相似文献   
3.
Molecular drift of the bride of sevenless (boss) gene in Drosophila   总被引:6,自引:1,他引:5  
DNA sequences were determined for three to five alleles of the bride-of- sevenless (boss) gene in each of four species of Drosophila. The product of boss is a transmembrane receptor for a ligand coded by the sevenless gene that triggers differentiation of the R7 photoreceptor cell in the compound eye. Population parameters affecting the rate and pattern of molecular evolution of boss were estimated from the multinomial configurations of nucleotide polymorphisms of synonymous codons. The time of divergence between D. melanogaster and D. simulans was estimated as approximately 1 Myr, that between D. teissieri and D. yakuba as approximately 0.75 Myr, and that between the two pairs of sibling species as approximately 2 Myr. (The boss genes themselves have estimated divergence times approximately 50% greater than the species divergence times.) The effective size of the species was estimated as approximately 5 x 10(6), and the average mutation rate was estimated as 1-2 x 10(-9)/nucleotide/generation. The ratio of amino acid polymorphisms within species to fixed differences between species suggests that approximately 25% of all possible single-step amino acid replacements in the boss gene product may be selectively neutral or nearly neutral. The data also imply that random genetic drift has been responsible for virtually all of the observed differences in the portion of the boss gene analyzed among the four species.   相似文献   
4.
We have analyzed the conserved regions of the gene coding for the circumsporozoite protein (CSP) in 12 species of Plasmodium, the malaria parasite. The closest evolutionary relative of P. falciparum, the agent of malignant human malaria, is P. reichenowi, a chimpanzee parasite. This is consistent with the hypothesis that P. falciparum is an ancient human parasite, associated with humans since the divergence of the hominids from their closest hominoid relatives. Three other human Plasmodium species are each genetically indistinguishable from species parasitic to nonhuman primates; that is, for the DNA sequences included in our analysis, the differences between species are not greater than the differences between strains of the human species. The human P. malariae is indistinguishable from P. brasilianum, and P. vivax is indistinguishable from P. simium; P. brasilianum and P. simium are parasitic to New World monkeys. The human P. vivax-like is indistinguishable from P. simiovale, a parasite of Old World macaques. We conjecture that P. malariae, P. vivax, and P. vivax-like are evolutionarily recent human parasites, the first two at least acquired only within the last several thousand years, and perhaps within the last few hundred years, after the expansion of human populations in South America following the European colonizations. We estimate the rate of evolution of the conserved regions of the CSP gene as 2.46 x 10(-9) per site per year. The divergence between the P. falciparum and P. reichenowi lineages is accordingly dated 8.9 Myr ago. The divergence between the three lineages leading to the human parasites is very ancient, about 100 Myr old between P. malariae and P. vivax (and P. vivax-like) and about 165 Myr old between P. falciparum and the other two.   相似文献   
5.
Oligomeric forms of the acetylcholine receptor are directly visualized by electron microscopy in receptor-rich membranes from torpedo marmorata. The receptor structures are quantitatively correlated with the molecular species so far identified only after detergent solubilization, and further related to the polypeptide composition of the membranes and changes thereof. The structural identification is made possibly by the increased fragility of the membranes after extraction of nonreceptor peptides and their subsequent disruption upon drying onto hydrophilic carbon supports. Receptor particles in native membranes depleted of nonreceptor peptides appear as single units of 7-8 nm, and double and multiple aggregates thereof. Particle doublets having a main-axis diameter of 19 +/- 3 nm predominate in these membranes. Linear aggregates of particles similar to those observed in rotary replicas of quick-frozen fresh electrolytes (Heuser, J.E. and S. R. Salpeter. 1979, J. Cell Biol. 82: 150-173) are also present in the alkaline-extracted membranes. Chemical modifications of the thiol groups shift the distribution of structural species. Dithiothreitol reduction, which renders almost exclusively the 9S, monomeric receptor form, results in the observation of the 7-8 nm particle in isolated form. The proportion of doublets increases in membranes alkylated with N-ethylmaleimide. Treatment with 5,5’-dithiobis-(nitrobenzoic acid) increases the proportion of higher oligomeric species, and particle aggregates (n=oligo) predominate. The nonreceptor v-peptide (doublet of M(r) 43,000) appears to play a role in the receptor monomer-polymer equilibria. Receptor protein and v-peptide co-aggregate upon reduction and reoxidation of native membranes. In membranes protected ab initio with N- ethylmaleimide, only the receptor appears to self-aggregate. The v-peptide cannot be extracted from these alkylated membranes, though it is easily released from normal, subsequently alkylated or reduced membranes. A stabilization of the dimeric species by the nonreceptor v-peptide is suggested by these experiments. Monospecific antibodies against the v-peptide are used in conjunction with rhodamine- labeled anti-bodies in an indirect immunoflourescence assay to map the vectorial exposure of the v-peptide. When intact membranes, v-peptide depleted and “holey” native membranes (treated with 0.3 percent saponin) are compared, maximal labeling is obtained with the latter type of membranes, suggesting a predominantly cytoplasmic exposure of the antigenic determinants of the v-peptide in the membrane. The influence of the v-peptide in the thiol-dependent interconversions of the receptor protein and the putative topography of the peptide are analyzed in the light of the present results.  相似文献   
6.
1. Guanosine-5-monophosphate (GMP) was evaluated as a neuroprotective agent against the damage observed in rat hippocampal slices submitted to an in vitro model of ischemia with or without the presence of the ionotropic glutamate receptor agonist, Kainic acid (KA).2. Cellular injury was evaluated by MTT reduction, lactate dehydrogenase (LDH) release assay, and measurement of intracellular ATP levels.3. In slices submitted to ischemic conditions, 1 mM GMP partially prevented the decrease in cell viability induced by glucose and oxygen deprivation and the addition of KA.4. KA or N-methyl-D-aspartate (NMDA) receptor antagonists, -D-glutamylamino-methylsulfonate (GAMS) or (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801, 20 M) also prevented toxicity in hippocampal slices under ischemic conditions, respectively.5. The association of GMP with GAMS or MK-801 did not induce additional protection than that observed with GMP or that classical glutamate receptor antagonists alone.6. GMP, probably by interacting with ionotropic glutamate receptors, attenuated the damage caused by glucose and oxygen deprivation in hippocampal slices. This neuroprotective action of GMP in this model of excitotoxicity is of outstanding interest in the search for effective therapies against ischemic injury.  相似文献   
7.
Docosahexaenoic acid (DHA) is important for central nervous system function during pathological states such as ischemia. DHA reduces neuronal injury in experimental brain ischemia; however, the underlying mechanisms are not well understood. In the present study, we investigated the effects of DHA on acute hippocampal slices subjected to experimental ischemia by transient oxygen and glucose deprivation (OGD) and re-oxygenation and the possible involvement of purinergic receptors as the mechanism underlying DHA-mediated neuroprotection. We observed that cellular viability reduction induced by experimental ischemia as well as cell damage and thiobarbituric acid reactive substances (TBARS) production induced by glutamate (10 mM) were prevented by hippocampal slices pretreated with DHA (5 μM). However, glutamate uptake reduction induced by OGD and re-oxygenation was not prevented by DHA. The beneficial effect of DHA against cellular viability reduction induced by OGD and re-oxygenation was blocked with PPADS (3 μM), a nonselective P2X1–5 receptor antagonist as well as with a combination of TNP-APT (100 nM) plus brilliant blue (100 nM), which blocked P2X1, P2X3, P2X2/3, and P2X7 receptors, respectively. Moreover, adenosine receptors blockade with A1 receptor antagonist DPCPX (100 nM) or with A2B receptor antagonist alloxazine (100 nM) inhibited DHA-mediated neuroprotection. The addition of an A2A receptor antagonist ZM241385 (50 nM), or A3 receptor antagonist VUF5574 (1 μM) was ineffective. Taken together, our results indicated that neuroprotective actions of DHA may depend on P2X, A1, and A2B purinergic receptors activation. Our results reinforce the notion that dietary DHA may act as a local purinergic modulator in order to prevent neurodegenerative diseases.  相似文献   
8.

Background

Circulating microRNAs (miRNAs) have been described as potential diagnostic biomarkers in cardiovascular disease and in particular, coronary artery disease (CAD). Few studies were undertaken to perform analyses with regard to risk stratification of future cardiovascular events. miR-126, miR-197 and miR-223 are involved in endovascular inflammation and platelet activation and have been described as biomarkers in the diagnosis of CAD. They were identified in a prospective study in relation to future myocardial infarction.

Objectives

The aim of our study was to further evaluate the prognostic value of these miRNAs in a large prospective cohort of patients with documented CAD.

Methods

Levels of miR-126, miR-197 and miR-223 were evaluated in serum samples of 873 CAD patients with respect to the endpoint cardiovascular death. miRNA quantification was performed using real time polymerase chain reaction (RT-qPCR).

Results

The median follow-up period was 4 years (IQR 2.78–5.04). The median age of all patients was 64 years (IQR 57–69) with 80.2% males. 38.9% of the patients presented with acute coronary syndrome (ACS), 61.1% were diagnosed with stable angina pectoris (SAP). Elevated levels of miRNA-197 and miRNA-223 reliably predicted future cardiovascular death in the overall group (miRNA-197: hazard ratio (HR) 1.77 per one standard deviation (SD) increase (95% confidence interval (CI) 1.20; 2.60), p = 0.004, C-index 0.78; miRNA-223: HR 2.23 per one SD increase (1.20; 4.14), p = 0.011, C-index 0.80). In ACS patients the prognostic power of both miRNAs was even higher (miRNA-197: HR 2.24 per one SD increase (1.25; 4.01), p = 0.006, C-index 0.89); miRA-223: HR 4.94 per one SD increase (1.42; 17.20), p = 0.012, C-index 0.89).

Conclusion

Serum-derived circulating miRNA-197 and miRNA-223 were identified as predictors for cardiovascular death in a large patient cohort with CAD. These results reinforce the assumption that circulating miRNAs are promising biomarkers with prognostic value with respect to future cardiovascular events.  相似文献   
9.
Guanosine-5-monophosphate (GMP) was evaluated as a neuroprotective agent against the damage induced by glutamate in rat hippocampal slices submitted to glucose deprivation. In slices maintained under physiological conditions, glutamate (0.01 to 10 mM), Kainate, alpha-amino-3-hydroxi-5-methylisoxazole-propionic acid (AMPA), N-methyl-D-aspartate (NMDA), 1S,3R-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD), or L-2-amino-4-phosphonobutanoic acid (L-AP4) (100 M) did not alter cell membrane permeability, as evaluated by lactate dehydrogenase (LDH) release assay. In slices submitted to glucose deprivation, GMP (from 0.5 mM) prevented LDH leakage and the loss of cell viability induced by 10 mM glutamate. LDH leakage induced by Kainate, AMPA, NMDA or 1S,3R-ACPD was fully prevented by 1 mM GMP. However, glutamate uptake was not altered in slices submitted to glucose deprivation and glutamate analogues. Glucose deprivation induced a significant decrease in ATP levels which was unchanged by addition of glutamate or GMP. Our results show that glucose deprivation decreases the energetic charge of cells, making hippocampal slices more susceptible to excitotoxicity and point to GMP as a neuroprotective agent acting as a glutamatergic antagonist.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号