首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   28篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   5篇
  2016年   7篇
  2015年   16篇
  2014年   11篇
  2013年   2篇
  2012年   5篇
  2011年   6篇
  2010年   11篇
  2009年   5篇
  2008年   7篇
  2007年   6篇
  2006年   7篇
  2005年   1篇
  2004年   9篇
  2003年   5篇
  2002年   9篇
  2001年   5篇
  2000年   4篇
  1999年   8篇
  1998年   13篇
  1997年   9篇
  1996年   11篇
  1995年   6篇
  1994年   6篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1990年   7篇
  1989年   3篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   9篇
  1984年   4篇
  1983年   4篇
  1982年   4篇
  1979年   2篇
  1978年   3篇
  1977年   7篇
  1976年   6篇
  1975年   4篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
排序方式: 共有262条查询结果,搜索用时 171 毫秒
1.
2.
Levels of mitochondrial DNA (mtDNA) sequence divergence between species within each of several avian (Anas, Aythya, Dendroica, Melospiza, and Zonotrichia) and nonavian (Lepomis and Hyla) vertebrate genera were compared. An analysis of digestion profiles generated by 13-18 restriction endonucleases indicates little overlap in magnitude of mtDNA divergence for the avian versus nonavian taxa examined. In 55 interspecific comparisons among the avian congeners, the fraction of identical fragment lengths (F) ranged from 0.26 to 0.96 (F = 0.46), and, given certain assumptions, these translate into estimates of nucleotide sequence divergence (p) ranging from 0.007 to 0.088; in 46 comparisons among the fish and amphibian congeners, F values ranged from 0.00 to 0.36 (F = 0.09), yielding estimates of P greater than 0.070. The small mtDNA distances among avian congeners are associated with protein-electrophoretic distances (D values) less than approximately 0.2, while the mtDNA distances among assayed fish and amphibian congeners are associated with D values usually greater than 0.4. Since the conservative pattern of protein differentiation previously reported for many avian versus nonavian taxa now appears to be paralleled by a conservative pattern of mtDNA divergence, it seems increasingly likely that many avian species have shared more recent common ancestors than have their nonavian taxonomic counterparts. However, estimates of avian divergence times derived from mtDNA- and protein-calibrated clocks cannot readily be reconciled with some published dates based on limited fossil remains. If the earlier paleontological interpretations are valid, then protein and mtDNA evolution must be somewhat decelerated in birds. The empirical and conceptual issues raised by these findings are highly analogous to those in the long-standing debate about rates of molecular evolution and times of separation of ancestral hominids from African apes.   相似文献   
3.
Statistical methods for computing the standard errors of the branching points of an evolutionary tree are developed. These methods are for the unweighted pair-group method-determined (UPGMA) trees reconstructed from molecular data such as amino acid sequences, nucleotide sequences, restriction-sites data, and electrophoretic distances. They were applied to data for the human, chimpanzee, gorilla, orangutan, and gibbon species. Among the four different sets of data used, DNA sequences for an 895-nucleotide segment of mitochondrial DNA (Brown et al. 1982) gave the most reliable tree, whereas electrophoretic data (Bruce and Ayala 1979) gave the least reliable one. The DNA sequence data suggested that the chimpanzee is the closest and that the gorilla is the next closest to the human species. The orangutan and gibbon are more distantly related to man than is the gorilla. This topology of the tree is in agreement with that for the tree obtained from chromosomal studies and DNA-hybridization experiments. However, the difference between the branching point for the human and the chimpanzee species and that for the gorilla species and the human-chimpanzee group is not statistically significant. In addition to this analysis, various factors that affect the accuracy of an estimated tree are discussed.   相似文献   
4.
We report the identification and characterization of the eps gene cluster of Streptococcus thermophilus Sfi6 required for exopolysaccharide (EPS) synthesis. This report is the first genetic work concerning EPS production in a food microorganism. The EPS secreted by this strain consists of the following tetrasaccharide repeating unit:-->3)-beta-D-Galp-(1-->3)-[alpha-D-Galp-(1-->6)]-beta-D- D-Galp-(1-->3)-alpha-D-Galp-D-GalpNAc-(1-->. The genetic locus The genetic locus was identified by Tn916 mutagenesis in combination with a plate assay to identify Eps mutants. Sequence analysis of the gene region, which was obtained from subclones of a genomic library of Sfi6, revealed a 15.25-kb region encoding 15 open reading frames. EPS expression in the non-EPS-producing heterologous host, Lactococcus lactis MG1363, showed that within the 15.25-kb region, a region with a size of 14.52 kb encoding the 13 genes epsA to epsM was capable of directing EPS synthesis and secretion in this host. Homology searches of the predicted proteins in the Swiss-Prot database revealed high homology (40 to 68% identity) for epsA, B, C, D, and E and the genes involved in capsule synthesis in Streptococcus pneumoniae and Streptococcus agalactiae. Moderate to low homology (37 to 18% identity) was detected for epsB, D, F, and H and the genes involved in capsule synthesis in Staphylococcus aureus for epsC, D, and E and the genes involved in exopolysaccharide I (EPSI) synthesis in Rhizobium meliloti for epsC to epsJ and the genes involved in lipopolysaccharide synthesis in members of the Enterobacteriaceae, and finally for eps K and lipB of Neisseria meningitidis. Genes (epsJ, epsL, and epsM) for which the predicted proteins showed little or no homology with proteins in the Swiss-Prot database were shown to be involved in EPS synthesis by single-crossover gene disruption experiments.  相似文献   
5.
A puzzling population-genetic phenomenon widely reported in allozyme surveys of marine bivalves is the occurrence of heterozygote deficits relative to Hardy-Weinberg expectations. Possible explanations for this pattern are categorized with respect to whether the effects should be confined to protein-level assays or are genomically pervasive and expected to be registered in both protein- and DNA-level assays. Anonymous nuclear DNA markers from the American oyster were employed to reexamine the phenomenon. In assays based on the polymerase chain reaction (PCR), two DNA-level processes were encountered that can lead to artifactual genotypic scorings: (a) differential amplification of alleles at a target locus and (b) amplification from multiple paralogous loci. We describe symptoms of these complications and prescribe methods that should generally help to ameliorate them. When artifactual scorings at two anonymous DNA loci in the American oyster were corrected, Hardy-Weinberg deviations registered in preliminary population assays decreased to nonsignificant values. Implications of these findings for the heterozygote-deficit phenomenon in marine bivalves, and for the general development and use of PCR-based assays, are discussed.   相似文献   
6.
Spontaneous, phenotypically stable mutations at the -galactosidase locus (lacL-lacM) in Lactobacillus helveticus were identified and analyzed. We found that a significant number of mutations were caused by integration of a new IS element, ISL2, into these lac genes. ISL2 is 858 by long, flanked by 16-bp perfect inverted repeats and generates 3-bp target duplications upon insertion. It contains one open reading frame, which shows significant homology (40.1 % identity) to the putative transposase of IS702 from Cyanobacterium calothrix. ISL2 is present in 4–21 copies in the L. helveticus genome, but it is not found in other lactic acid bacteria. Its divergence in copy number and genomic locations in different L. helveticus strains makes it useful as a tool for strain identification by genetic fingerprinting.  相似文献   
7.
Several pGEM5- and pUC19-derived plasmids containing a selectable erythromycin resistance marker were integrated into the chromosome of Streptococcus thermophilus at the loci of the lactose-metabolizing genes. Integration occurred via homologous recombination and resulted in cointegrates between plasmid and genome, flanked by the homologous DNA used for integration. Selective pressure on the plasmid-located erythromycin resistance gene resulted in multiple amplifications of the integrated plasmid. Release of this selective pressure, however, gave way to homologous resolution of the cointegrate structures. By integration and subsequent resolution, we were able to replace the chromosomal lacZ gene with a modified copy carrying an in vitro-generated deletion. In the same way, we integrated a promoterless chloramphenicol acetyltransferase (cat) gene between the chromosomal lacS and lacZ genes of the lactose operon. The inserted cat gene became a functional part of the operon and was expressed and regulated accordingly. Selective pressure on the essential lacS and lacZ genes under normal growth conditions in milk ensures the maintenance and expression of the integrated gene. As there are only minimal repeated DNA sequences (an NdeI site) flanking the inserted cat gene, it was stably maintained even in the absence of lactose, i.e., when grown on sucrose or glucose. The methodology represents a stable system in which to express and regulate foreign genes in S. thermophilus, which could qualify in the future for an application with food.  相似文献   
8.
9.
10.
Molecular systematists need increased access to nuclear genes. Highly conserved, low copy number protein-encoding nuclear genes have attractive features for phylogenetic inference but have heretofore been applied mostly to very ancient divergences. By virtue of their synonymous substitutions, such genes should contain a wealth of information about lower-level taxonomic relationships as well, with the advantage that amino acid conservatism makes both alignment and primer definition straightforward. We tested this postulate for the elongation factor-1 alpha (EF-1 alpha) gene in the noctuid moth subfamily Heliothinae, which has probably diversified since the middle Tertiary. We sequenced 1,240 bp in 18 taxa representing heliothine groupings strongly supported by previous morphological and allozyme studies. The single most parsimonious gene tree and the neighbor-joining tree for all nucleotides show almost complete concordance with the morphological tree. Homoplasy and pairwise divergence levels are low, transition/transversion ratios are high, and phylogenetic information is spread evenly across gene regions. The EF-1 alpha gene and presumably other highly conserved genes hold much promise for phylogenetics of Tertiary age eukaryote groups.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号