首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   20篇
  160篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   6篇
  2012年   5篇
  2011年   14篇
  2010年   7篇
  2009年   2篇
  2008年   12篇
  2007年   12篇
  2006年   12篇
  2005年   10篇
  2004年   12篇
  2003年   11篇
  2002年   7篇
  2001年   7篇
  2000年   9篇
  1999年   4篇
  1998年   4篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有160条查询结果,搜索用时 15 毫秒
1.
2.
Regulation of cardiac hypertrophy by intracellular signalling pathways   总被引:1,自引:0,他引:1  
The mammalian heart is a dynamic organ that can grow and change to accommodate alterations in its workload. During development and in response to physiological stimuli or pathological insults, the heart undergoes hypertrophic enlargement, which is characterized by an increase in the size of individual cardiac myocytes. Recent findings in genetically modified animal models implicate important intermediate signal-transduction pathways in the coordination of heart growth following physiological and pathological stimulation.  相似文献   
3.
4.
Calcineurin is a protein phosphatase that is uniquely regulated by sustained increases in intracellular Ca2+ following signal transduction events. Calcineurin controls cellular proliferation, differentiation, apoptosis, and inducible gene expression following stress and neuroendocrine stimulation. In the adult heart, calcineurin regulates hypertrophic growth of cardiomyocytes in response to pathologic insults that are associated with altered Ca2+ handling. Here we determined that calcineurin signaling is directly linked to the proper control of cardiac contractility, rhythm, and the expression of Ca2+-handling genes in the heart. Our approach involved a cardiomyocyte-specific deletion using a CnB1-LoxP-targeted allele in mice and three different cardiac-expressing Cre alleles/transgenes. Deletion of calcineurin with the Nkx2.5-Cre knock-in allele resulted in lethality at 1 day after birth due to altered right ventricular morphogenesis, reduced ventricular trabeculation, septal defects, and valvular overgrowth. Slightly later deletion of calcineurin with the α-myosin heavy chain Cre transgene resulted in lethality in early mid adulthood that was characterized by substantial reductions in cardiac contractility, severe arrhythmia, and reduced myocyte content in the heart. Young calcineurin heart-deleted mice died suddenly after pressure overload stimulation or neuroendocrine agonist infusion, and telemetric monitoring of older mice showed arrhythmia leading to sudden death. Mechanistically, loss of calcineurin reduced expression of key Ca2+-handling genes that likely lead to arrhythmia and reduced contractility. Loss of calcineurin also directly impacted cellular proliferation in the postnatal developing heart. These results reveal multiple mechanisms whereby calcineurin regulates cardiac development and myocyte contractility.  相似文献   
5.
6.
Trends in coral cover are widely used to indicate the health of coral reefs but are costly to obtain from field survey over large areas. In situ studies of reflected spectra at the coral surface show that living and recently dead colonies can be distinguished. Here, we investigate whether such spectral differences can be detected using an airborne remote sensing instrument. The Compact Airborne Spectrographic Imager (Itres Research Ltd, Canada) was flown in two configurations: 10 spectral bands with 1-m2 pixels and 6 spectral bands with 0.25-m2 pixels. First, we show that an instrument with 10 spectral bands possesses adequate spectral resolution to distinguish living Porites, living Pocillopora spp., partially dead Porites, recently dead Porites (total colony mortality within 6 months), old dead (>6 months) Porites, Halimeda spp., and coralline red algae when there is no water column to confuse spectra. All substrata were distinguished using fourth-order spectral derivatives around 538 nm and 562 nm. Then, at a shallow site (Tivaru) at Rangiroa Atoll, Tuamotu Archipelago (French Polynesia), we show that live and dead coral can be distinguished from the air to a depth of at least 4 m using first- and fourth-order spectral derivatives between 562–580 nm. However, partially dead and recently dead Porites colonies could not be distinguished from an airborne platform. Spectral differences among substrata are then exploited to predict the cover of reef substrata in ten 25-m2 plots at nearby Motu Nuhi (max depth 8 m). The actual cover in these plots was determined in situ using quadrats with a 0.01-m2 grid. Considerable disparity occurred between field and image-based measures of substrate cover within individual 25-m2 quadrats. At this small scale, disparity, measured as the absolute difference in cover between field and remote-sensing methods, reached 25% in some substrata but was always less than 10% for living coral (99% of which consisted of Porites spp.). At the scale of the reef (all ten 25-m2 quadrats), however, disparities in percent cover between imagery and field data were less than 10% for all substrata and extremely low for some classes (e.g. <3% for living Porites, recently dead Porites and Halimeda). The least accurately estimated substrata were sand and coralline red algae, which were overestimated by absolute values 7.9% and 6.6%, respectively. The precision of sampling was similar for field and remote-sensing methods: field methods required 19 plots to detect a 10% difference in coral cover among three reefs with a statistical power of 95%. Remote-sensing methods required 21 plots. However, it took 1 h to acquire imagery over 92,500 m2 of reef, which represents 3,700 plots of 25 m2 each, compared with 3 days to survey 10 such plots underwater. There were no significant differences in accuracy between 1-m2 and 0.25-m2 image resolutions, suggesting that the advantage of using smaller pixels is offset by reduced spectral information and an increase in noise (noise was observed to be 1.6–1.8 times greater in 0.25-m2 pixels). We show that airborne remote sensing can be used to monitor coral and algal cover over large areas, providing that water is shallow and clear, and that brown fleshy macroalgae are scarce, that depth is known independently (e.g. from sonar survey).  相似文献   
7.
Calcineurin and human heart failure   总被引:8,自引:0,他引:8  
  相似文献   
8.
Overexpression of calcineurin (CLN) in the mouse heart induces severe hypertrophy that progresses to heart failure, providing an opportunity to define the relationship between energetics and contractile performance in the severely failing mouse heart. Contractile performance was studied in isolated hearts at different pacing frequencies and during dobutamine challenge. Energetics were assessed by 31P-NMR spectroscopy as ATP and phosphocreatine concentrations ([ATP] and [PCr]) and free energy of ATP hydrolysis (|Delta G( approximately ATP)|). Mitochondrial and glycolytic enzyme activities, myocardial O2 consumption, and myocyte ultrastructure were determined. In transgenic (TG) hearts at all levels of work, indexes of systolic performance were reduced and [ATP] and capacity for ATP synthesis were lower than in non-TG hearts. This is the first report showing that myocardial [ATP] is lower in a TG mouse model of heart failure. [PCr] was also lower, despite an unexpected increase in the total creatine pool. Because Pi concentration remained low, despite lower [ATP] and [PCr], |Delta G( approximately ATP)| was normal; however, chemical energy did not translate to systolic performance. This was most apparent with beta-adrenergic stimulation of TG hearts, during which, for similar changes in |Delta G( approximately ATP)|, systolic pressure decreased, rather than increased. Structural abnormalities observed for sarcomeres and mitochondria likely contribute to decreased contractile performance. On the basis of the increases in enzyme activities of proteins important for ATP supply observed after treatment with the CLN inhibitor cyclosporin A, we also conclude that CLN directed inhibition of ATP-producing pathways in non-TG and TG hearts.  相似文献   
9.
Although mature myocytes rely on mitochondria as the primary source of energy, the role of mitochondria in the developing heart is not well known. Here, we find that closure of the mitochondrial permeability transition pore (mPTP) drives maturation of mitochondrial structure and function and myocyte differentiation. Cardiomyocytes at embryonic day (E) 9.5, when compared to E13.5, displayed fragmented mitochondria with few cristae, a less-polarized mitochondrial membrane potential, higher reactive oxygen species (ROS) levels, and an open mPTP. Pharmacologic and genetic closing of the mPTP yielded maturation of mitochondrial structure and function, lowered ROS, and increased myocyte differentiation (measured by counting Z bands). Furthermore, myocyte differentiation was inhibited and enhanced with oxidant and antioxidant treatment, respectively, suggesting that redox-signaling pathways lie downstream of mitochondria to regulate cardiac myocyte differentiation.  相似文献   
10.
Inositol 1,4,5′-triphosphate receptor II (IP3RII) calcium channel expression is increased in both hypertrophic failing human myocardium and experimentally induced models of the disease. The ectopic calcium released from these receptors induces pro-hypertrophic gene expression and may promote arrhythmias. Here, we show that IP3RII expression was constitutively restrained by the muscle-specific miRNA, miR-133a. During the hypertrophic response to pressure overload or neurohormonal stimuli, miR-133a down-regulation permitted IP3RII levels to increase, instigating pro-hypertrophic calcium signaling and concomitant pathological remodeling. Using a combination of in vivo and in vitro approaches, we demonstrated that IP3-induced calcium release (IICR) initiated the hypertrophy-associated decrease in miR-133a. In this manner, hypertrophic stimuli that engage IICR set a feed-forward mechanism in motion whereby IICR decreased miR-133a expression, further augmenting IP3RII levels and therefore pro-hypertrophic calcium release. Consequently, IICR can be considered as both an initiating event and a driving force for pathological remodeling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号