首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   343篇
  免费   40篇
  国内免费   2篇
  2021年   7篇
  2020年   5篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   6篇
  2015年   13篇
  2014年   12篇
  2013年   25篇
  2012年   8篇
  2011年   16篇
  2010年   9篇
  2009年   7篇
  2008年   13篇
  2007年   6篇
  2006年   6篇
  2005年   7篇
  2004年   9篇
  2003年   10篇
  2002年   5篇
  2001年   12篇
  2000年   20篇
  1999年   8篇
  1998年   10篇
  1997年   6篇
  1996年   7篇
  1995年   6篇
  1994年   11篇
  1993年   6篇
  1992年   12篇
  1991年   6篇
  1990年   14篇
  1989年   6篇
  1988年   10篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1978年   3篇
  1976年   3篇
  1973年   5篇
  1971年   3篇
  1970年   5篇
  1969年   2篇
  1967年   2篇
  1940年   2篇
  1928年   2篇
  1927年   2篇
  1922年   2篇
排序方式: 共有385条查询结果,搜索用时 234 毫秒
1.
Chalcone synthase (CHS) genes in Petunia hybrida comprise a multigene family containing at least 7 complete members in the strain Violet 30 (V30). Based on a high sequence homology in both coding and non-coding sequence, a number of CHS genes can be placed into two subfamilies. By restriction fragment length polymorphism (RFLP) analysis it was shown that both chromosomes II and V carry one of these subfamilies, in addition to the other CHS genes identified so far. Members of a subfamily were found to be closely linked genetically. Analysis of the Petunia species that contributed to the hybrid nature of P. hybrida (P. axillaris, P. parodii, P. inflata and P. violacea) shows that none of the CHS gene clusters is specific for either one of the parents and therefore did not arise as a consequence of the hybridization. The number of CHS genes within a subfamily varies considerably among these Petunia species. From this we infer that the CHS subfamilies arose from very recent gene duplications.  相似文献   
2.
The effects of oryzalin, a dinitroaniline herbicide, on chromosome behavior and on cellular microtubules (MTs) were examined by light microscopy and immunogold staining, respectively, in endosperm cells from Haemanthus katherinae Bak. Brief treatments with 1.0·10-8 M oryzalin reduced markedly the migration rate of anaphase chromosomes and 1.0·10-7 M oryzalin stopped migration abruptly. Oryzalin (1.0·10-7 M) depolymerized MTs and prevented the polymerization of new MTs at all stages of the mitotic cycle. The chromosome condensation cycle was unaffected by oryzalin. Endothelial cells from the heart of Xenopus leavis showed no chromosomal or microtubular rearrangements after oryzalin treatment. The inhibition by oryzalin of the polymerization of tubulin isolated from cultured cells of Rosa sp. cv. Paul's scarlet was examined in vitro by turbidimetry, electron microscopy and polymer sedimentation analysis. Oryzalin inhibited the rapid phase of taxol-induced polymerization of rose MTs at 24°C with an apparent inhibition constant (K i ) of 2.59·106 M. Shorter and fewer MTs were formed with increasing oryzalin concentrations, and maximum inhibition of taxol-induced polymerization occurred at approx. 1:1 molar ratios of oryzalin and tubulin. Oryzalin partially depolymerized taxol-stabilized rose MTs. Ligand-binding experiments with [14C]oryzalin demonstrated the formation of a tubulin-oryzalin complex that was time- and pH-dependent. The tubulin-oryzalin interaction (24°C, pH 7.1) had an apparent affinity constant (K app) of 1.19·105 M-1. Oryzalin did not inhibit taxol-induced polymerization of bovinebrain MTs and no appreciable binding of oryzalin to brain tubulin or other proteins was detected. The results demonstrate pharmacological differences between plant and animal tubulins and indicate that the most sensitive mode of action of the dinitroaniline herbicides is the direct poisoning of MT dynamics in cells of higher plants.Abbreviations MT microtubule - SIB sucrose isolation buffer - TO tubulin-oryzalin complex  相似文献   
3.
We have analysed the expression of the 8–10 members of the gene family encoding the flavonoid biosynthetic enzyme chalcone synthase (CHS) from Petunia hybrida. During normal plant development only two members of the gene family (CHS-A and CHS-J) are expressed. Their expression is restricted to floral tissues mainly. About 90% of the total CHS mRNA pool is transcribed from CHS-A, wheares CHS-J delivers about 10% in flower corolla, tube and anthers. Expression of CHS-A and CHS-J during flower development is coordinated and (red) light-dependent. In young seedlings and cell suspension cultures expression of CHS-A and CHS-J can be induced with UV light. In addition to CHS-A and CHS-J, expression of another two CHS genes (CHS-B and CHS-G) is induced in young seedlings by UV light, albeit at a low level. In contrast to CHS genes from Leguminoseae, Petunia CHS genes are not inducible by phytopathogen-derived elicitors. Expression of CHS-A and CHS-J is reduced to a similar extent in a regulatory CHS mutant, Petunia hybrida Red Star, suggesting that both genes are regulated by the same trans-acting factors. Comparison of the promoter sequences of CHS-A and CHS-J reveals some striking homologies, which might represent cis-acting regulatory sequences.  相似文献   
4.
5.
Antisense genes in plants: an overview   总被引:18,自引:0,他引:18  
Plants are the first multicellular higher eukaryotic organisms in which artificial antisense genes have been shown to down-regulate target gene expression. Manipulations with an antisense gene can serve as a tool to study the effect of a particular plant gene inactivation, the interaction of gene products whose genes are coordinately expressed, or the functional analysis of cryptic genes. Transgenic plants harbouring an antisense gene already gave rise to patentable new characteristics, showing that the technique has great scientific and economic value.  相似文献   
6.
Chalcone synthase (CHS) genes in Petunia hybrida comprise a multigene family containing at least 7 complete members in the strain Violet 30 (V30). Based on a high sequence homology in both coding and non-coding sequence, a number of CHS genes can be placed into two subfamilies. By restriction fragment length polymorphism (RFLP) analysis it was shown that both chromosomes II and V carry one of these subfamilies, in addition to the other CHS genes identified so far. Members of a subfamily were found to be closely linked genetically. Analysis of the Petunia species that contributed to the hybrid nature of P. hybrida (P. axillaris, P. parodii, P. inflata and P. violacea) shows that none of the CHS gene clusters is specific for either one of the parents and therefore did not arise as a consequence of the hybridization. The number of CHS genes within a subfamily varies considerably among these Petunia species. From this we infer that the CHS subfamilies arose from very recent gene duplications.  相似文献   
7.
The formation of reactive oxygen intermediates (ROI) during redox cycling of newly synthesized potential antitumor 2,5-bis (1-aziridinyl)-1,4-benzoquinone (BABQ) derivatives has been studied by assaying the production of ROI (superoxide, hydroxyl radical, and hydrogen peroxide) by xanthine oxidase in the presence of BABQ derivatives. At low concentrations (< 10 microM) some BABQ derivatives turned out to inhibit the production of superoxide and hydroxyl radicals by xanthine oxidase, while the effect on the xanthine-oxidase-induced production of hydrogen peroxide was much less pronounced. Induction of DNA strand breaks by reactive oxygen species generated by xanthine oxidase was also inhibited by BABQ derivatives. The DNA damage was comparable to the amount of hydroxyl radicals produced. The inhibiting effect on hydroxyl radical production can be explained as a consequence of the lowered level of superoxide, which disrupts the Haber-Weiss reaction sequence. The inhibitory effect of BABQ derivatives on superoxide formation correlated with their one-electron reduction potentials: BABQ derivatives with a high reduction potential scavenge superoxide anion radicals produced by xanthine oxidase, leading to reduced BABQ species and production of hydrogen peroxide from reoxidation of reduced BABQ. This study, using a unique series of BABQ derivatives with an extended range of reduction potentials, demonstrates that the formation of superoxide and hydroxyl radicals by bioreductively activated antitumor quinones can in principle be uncoupled from alkylating activity.  相似文献   
8.
The purification and crystallization of Fab fragments of two mouse monoclonal immunoglobulins specific for different DNA structures are described. In each case, papain digestion of the immunoglobulins produced a mixture of Fab species differing in their isoelectric points. Purification of one of these species was required to obtain suitable crystals. One of these antibodies, Jel 72, is specific for right-handed duplex poly(dG).poly(dC). An Fab fragment of Jel 72 with a pI of 8.8 was purified by anion-exchange chromatography and used to obtain crystals from 56% saturated ammonium sulfate and 50 mM sodium acetate, pH 4.2, that diffract to 2.6-A resolution. They belong to the orthorhombic space group P2(1)2(1)2(1), with cell dimensions of a = 94.6, b = 102.6, c = 92.4 A. The other antibody, Jel 318, binds triple-stranded DNA poly[d(Tm5C)].poly[d(GA)].poly[d(m5C + T)]. Jel 318 Fab fragments with isoelectric points of 7.6 and 7.8 were also purified by anion-exchange chromatography, and crystals were obtained from 12% polyethylene glycol 8000, 50 mM NaCl, and 10 mM Tris.HCl, pH 7.8. These crystals diffract to about 2.4-A resolution and also belong to the orthorhombic space group P2(1)2(1)2(1), with cell dimensions of a = 82.4, b = 139.5, and c = 42.0 A. For both Fab fragments, crystal size and quality improved dramatically upon purification of an individual isoelectric species.  相似文献   
9.
The irreversible binding of the radical cation of promethazine (PMZ+.) to DNA and protein in vitro and bacterial macromolecules in situ has been studied. Binding experiments were performed with synthesized [35S] promethazine. The results are compared to those with the chlorpromazine radical cation (CPZ+.). Secondary reaction products which result from fission of the alkylamino side chain are involved in the macromolecular binding of PMZ+. Compared to CPZ+. the covalent DNA binding of PMZ+. is significantly less. A larger amount of PMZ+. binds to single-stranded DNA than to double-stranded DNA. The extent of binding to proteins and RNA is of the same order as that of CPZ+. Bacterial mutagenicity tests show that the low genotoxicity of PMZ+. is related to the low DNA binding. The bacterial cytotoxicity is possibly related to the covalent protein binding. Similar results have been obtained with photoactivated promethazine (PMZ) and chlorpromazine (CPZ). The role of radical cations in the photosensitization and metabolic activation of phenothiazine drugs is discussed.  相似文献   
10.
The reorganization of the microtubular meshwork was studied in intact Haemanthus endosperm cells and cell fragments (cytoplasts). This higher plant tissue is devoid of a known microtubule organizating organelle. Observations on living cells were correlated with microtubule arrangements visualized with the immunogold method. In small fragments, reorganization did not proceed. In medium and large sized fragments, microtubular converging centers formed first. Then these converging centers reorganized into either closed bushy microtubular spiral or chromosome-free cytoplasmic spindles/phragmoplasts. Therefore, the final shape of organized microtubular structures, including spindle shaped, was determined by the initial size of the cell fragments and could be achieved without chromosomes or centrioles. Converging centers elongate due to the formation of additional structures resembling microtubular fir trees. These structures were observed at the pole of the microtubular converging center in anucleate fragments, accessory phragmoplasts in nucleated cells, and in the polar region of the mitotic spindle during anaphase. Therefore, during anaphase pronounced assembly of new microtubules occurs at the polar region of acentriolar spindles. Moreover, statistical analysis demonstrated that during the first two-thirds of anaphase, when chromosomes move with an approximately constant speed, kinetochore fibers shorten, while the length of the kinetochore fiber complex remains constant due to the simultaneous elongation of their integral parts (microtubular fir trees). The half-spindle shortens only during the last one-third of anaphase. These data contradict the presently prevailing view that chromosome-to-pole movements in acentriolar spindles of higher plants are concurrent with the shortening of the half-spindle, the self-reorganizing property of higher plant microtubules (tubulin) in vivo. It may be specific for cells without centrosomes and may be superimposed also on other microtubule-related processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号