首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2016年   1篇
  2014年   1篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
排序方式: 共有15条查询结果,搜索用时 312 毫秒
1.
Microbiology - Polyethylene glycol (PEG 6000) was used to establish osmotic stress conditions during growth of the type strain Azospirillum brasilense Sp7 and its spontaneous variants Sp7.4 and...  相似文献   
2.
The gas temperature in an electrode microwave discharge in hydrogen at pressures of 1–8 torr and input powers of 20–90 W is determined from the relative intensities of the rotational lines of the electronically excited molecules of the Fulcher α system of molecular hydrogen. It is found that the gas temperature in the discharge is no higher than 800 K over the entire range of the experimental conditions under study. For this reason, plasma resonance cannot be regarded as a factor determining the physical processes in the discharge over the entire pressure range. Since the discharge unit is a nonuniform gas-dynamic system (the gas is fed through a small hole into a chamber of limited size), there is a possibility of generating vortex flows that intensively mix the gas. This results in a uniform distribution of the gas temperature throughout the entire volume of the spherical plasma structure produced in the experiment.  相似文献   
3.
The structure of electrode microwave (2.45 GHz) discharges in hydrogen with electrodes of various shapes and sizes at pressures of 1–8 torr and incident powers of 2–150 W is studied. It is found that the discharges exhibit a common feature that is independent of the antenna-electrode design: near the electrode surface, there is a thin bright sheath surrounded by a less bright, sharply bounded region, which is usually shaped like a sphere. It is suggested that the structure observed arises because the microwave field maintaining the discharge is strongly nonuniform. Near the electrode, there exists a thin dense plasma sheath with a high electron density gradient. A strong dependence of the electron-impact excitation coefficient on the electric field makes the effect even more pronounced. As the electron density decreases due to dissociative recombination, the microwave field gradient decreases and the discharge emission intensity tends to a nearly constant value. Presumably, in the boundary region of the discharge, there exists a surface wave, which increases the emission intensity at the periphery of the discharge.  相似文献   
4.
The electrode region of an electrode microwave discharge in hydrogen at pressures of 0.5–4 torr and absorbed powers of up to 12 W is studied using emission spectroscopy and actinometry. It is shown that the gas temperature is at most 700 K and the degree of dissociation does not exceed several percent. Direct electron impact is shown to be the main factor governing all the processes in the electrode region of the discharge, including the excitation of the recorded emission. In particular, the Balmer-series Hα line emission is related to the dissociative electron-impact excitation of hydrogen molecules in the ground state.  相似文献   
5.
Microbiology - Due to the primary localization of both epiphytic and endophytic plant growth-promoting rhizobacteria on the surface of the plant root system, biofilm formation is an adaptive trait...  相似文献   
6.
Results of experiments on the compression of tungsten wire arrays by the plasma current sheath (PCS) of the PF-3 facility at currents of up to 2 MA are presented. The efficiency of current transportation to the wire array and switching-over of the discharge current to the array were studied. Information on the penetration of the magnetic field into the wire array obtained using microprobes made it possible to compare the obtained experimental data with the results of magnetic field measurements carried out at other high-power electrophysical devices. The intensity of plasma production from tungsten wires under the action of the plasma focus PCS is estimated. The experimental results are tested against the existing models of wire array implosion with prolonged plasma production.  相似文献   
7.
Results are presented from experimental and theoretical studies of the influence of the radiation of the plasma-focus current sheath on the implosion dynamics of condensed targets. Radiative losses from the current sheath of a plasma focus in neon, argon, and hydrogen with a 2% admixture of Xe are calculated with allowance for the line, bremsstrahlung, and recombination radiation. It is shown that the temperature of the neon plasma (10–15 eV) is quite sufficient to evaporate Al2O3 grains of radii 10–20 μm. The use of neon as a working gas makes it possible to alter the cold-start condition in experiments on the implosion of foam liners.  相似文献   
8.
Microbiology - Bacteria adapt rapidly to changes in ambient conditions, constantly inspecting their surroundings by means of their sensor systems. These systems are often thought to respond only to...  相似文献   
9.
The parameters of the plasma of a microwave electrode discharge in hydrogen at pressures of 1–8 torr and incident powers of 20–80 W are measured by the so-called “relative intensity” method. The method allows one to determine the electron density and electric field in plasma by measuring the relative intensities of the Hα, Hβ, and 763.5-nm Ar line emission and calculating the electron-impact rate constants from the homogeneous Boltzmann equation. The measurements show that there are regions in the discharge where the electron density is higher (a bright electrode sheath) and lower (a spherical region) than the critical density for the frequency 2.45 GHz (ncr~7×1010 cm?3). Inside the spherical region, the electric field varies slightly over the radius and the electron density increases as the discharge boundary is approached. The observed discharge structure can be attributed to the presence of a self-sustained discharge zone (electrode sheath); a non-self-sustained discharge zone (spherical region); and a decaying plasma region, which is separated from the active discharge zone by an electric double layer.  相似文献   
10.
Results are presented from experimental studies of the formation of a pinch in a plasma focus discharge in the presence of Al2O3 dust grains. Considerable attention is given to an analysis of the method for creating a dust target and determining its parameters. Phase transitions in a dust medium have been analyzed. It is found that the phase state of the dust component can be substantially affected by the radiation of the imploding plasma shell even in the preimplosion phase of the discharge. It is shown that a pinch produced in the presence of dust is more stable against MHD instabilities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号