首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1428篇
  免费   59篇
  国内免费   2篇
  1489篇
  2024年   3篇
  2023年   15篇
  2022年   47篇
  2021年   81篇
  2020年   47篇
  2019年   57篇
  2018年   62篇
  2017年   57篇
  2016年   88篇
  2015年   114篇
  2014年   107篇
  2013年   159篇
  2012年   133篇
  2011年   120篇
  2010年   62篇
  2009年   53篇
  2008年   43篇
  2007年   42篇
  2006年   35篇
  2005年   36篇
  2004年   25篇
  2003年   23篇
  2002年   14篇
  2001年   1篇
  2000年   4篇
  1999年   9篇
  1998年   4篇
  1997年   5篇
  1996年   6篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1987年   5篇
  1985年   1篇
  1984年   4篇
  1982年   2篇
  1981年   1篇
  1974年   2篇
  1973年   3篇
  1967年   1篇
排序方式: 共有1489条查询结果,搜索用时 0 毫秒
1.
Rice straw is produced as a by-product from rice cultivation, which is composed largely of lignocellulosic materials amenable to general biodegradation. Lignocellulolytic actinobacteria can be used as a potential agent for rapid composting of bulky rice straw. Twenty-five actinobacteria isolates were isolated from various in situ and in vitro rice straw compost sources. Isolates A2, A4, A7, A9 and A24 were selected through enzymatic degradation of starch, cellulose and lignin followed by the screening for their adaptability on rice straw powder amended media. The best adapted isolate (A7) was identified as Micromonospora carbonacea. It was able to degrade cellulose, hemicelluloses and carbon significantly (P ≤ 0.05) over the control. C/N ratio was reduced to 18.1 from an initial value of 29.3 in 6 weeks of composting thus having the potential to be used in large scale composting of rice straw.  相似文献   
2.
S Riazuddin  A Athar    A Sohail 《Nucleic acids research》1987,15(22):9471-9486
Three peaks of methyltransferase activity specific for MNNG alkylated DNA have been identified from extracts of chemically adapted M. luteus. They are designated as TI to TIII in order to their elution from a Sephadex G-75 column. The first one of these peaks has been purified to homogeneity. TI, is an inducible, unusually salt resistant, heat labile protein which corrects O6-methylguanine in alkylated DNA by the transfer of the O6-alkyl group to a cysteine amino acid in the TI protein. There is a stoichiometric relationship between the loss of O6-methylguanine from the DNA and the production of S-methylcysteine. Partially purified TII & TIII proteins show specificity for O4-alkylthymine and methyl phosphotriesters respectively. The mode of repair by the isolated methyltransferases is similar yet there is no competition for substrate specificity. The apparent molecular weights of TI, TII & TIII proteins are 31Kd, 22Kd, and 13Kd respectively.  相似文献   
3.
Effects of tissue position (viz. outer vs inner mesocarp) and heat treatment (48°C, 20 min) on variations in polygalacturonase (EC 3.2.1.15 and EC 3.2.1.67) activity and ripening of fruits of Carica papaya L. cv. Backcross Solo were investigated. Polygalacturonase activity increased during ripening concomitantly with an increase in tissue softness and soluble polyuronide level. Throughout ripening, inner mesocarp tissue was softer and contained higher polygalacturonase activity than outer mesocarp tissue. Titratable acidity as well as ß-galactosidase (EC 3.2.1.23) activity also increased during ripening; however, unlike polygalacturonase, their level or activity was lower in inner than in outer mesocarp. Ascorbic acid could partially account for the increase in titratable acidity during ripening but contributed very little to the differences in titratable acid levels between outer and inner mesocarp. Heat treatment had no effect on either fruit softness or titratable acidity, but it markedly reduced the increase in ascorbic acid and polygalacturonase activity during ripening. Ripening, as reflected by changes in tissue softness and polygalacturonase activity, progressed outwardly from the interior towards the exterior of the fruit. The effect of heat treatment in suppressing polygalacturonase activity was relatively greater in inner than in outer mesocarp, suggesting that sensitivity of the enzyme to heat treatment may vary with stage of ripeness of the tissue.  相似文献   
4.
Procedures are deseribed for the efficient isolation of protoplasts from a variety of oil palm (Elaeis guineensis Jacq.) tissues. Various factors including donor source, composition of enzyme mixture and culture medium affected the yield and viability of the protoplasts Polyembryogenic cultures of oil palm were the most suitable starting material in terms of yield, viability and metabolic competence. Pectolyase Y-23 in association with cellulase and hemicellulase was required for the efficient release of protoplasts from the oil palm tissues. Limited cell division to form microcallus was observed at very low frequency (<0.01%) when glutathione and catalase were incorporated in the culture medium.Abbreviations 2,4-d dichlorophenoxyacetic acid - DTT dithiothreitol - MES 2[N-morpholino] ethanesulphonic acid - NAA 1-naphthalene acetic acid - PVP polyvinylpyrrolidone  相似文献   
5.
In recent years, choloroaluminum phthalocyanine tetrasulfonate (A1PCTS) has been shown to be a promising photosensitizer for the photodynamic therapy (PDT) of cancer. Although its mechanism of photodynamic action is not well defined, A1PCTS is going to be under clinical trials of PDT. In this study, in vitro addition of A1PCTS to a suspension of rat epidermal microsomes followed by irradiation with red light (approximately 675 nm) resulted in significant destruction of cytochrome P-450 and associated monooxygenase activities. The photodestructive effect was dependent on both the dose of A1PCTS and the duration of light exposure. Studies using various quenchers of reactive oxygen species showed that only scavengers of singlet oxygen such as histidine, 2,5-dimethylfuran, beta-carotene and sodium azide afforded substantial protection against photodestruction. Our data indicate the direct involvement of singlet oxygen in the A1PCTS-mediated photodestructive process.  相似文献   
6.
7.
We report here the synthesis, characterization and in vitro antiamoebic activity of 5-nitrothiophene-2-carboxaldehyde thiosemicarbazones (TSC), 1–5, and their bidentate complexes [Ru(η4-C8H12)(TSC)Cl2] 1a–5a. The biological studies of these compounds were investigated against HK-9 strain of Entamoeba histolytica and the concentration causing 50% cell growth inhibition (IC50) was calculated in the micromolar range. The ligands exhibited antiamoebic activity in the range (2.05–5.29 μM). Screening results indicated that the potencies of the compounds increased by the incorporation of ruthenium(II) in the thiosemicarbazones. The complexes 1a–5a showed antiamoebic activity with an IC50 of 0.61–1.43 μM and were better inhibitors of growth of E. histolytica, based on IC50 values. The most promising among them is Ru(II) complex 2a having 1,2,3,4-tetrahydroquinoline as N4 substitution.  相似文献   
8.
The Drosophila discs large tumor suppressor protein, Dlg, is the prototype of a newly discovered family of proteins termed MAGUKs (membrane-associated guanylate kinase homologues). MAGUKs are localized at the membrane-cytoskeleton interface, usually at cell-cell junctions, where they appear to have both structural and signaling roles. They contain several distinct domains, including a modified guanylate kinase domain, an SH3 motif, and one or three copies of the DHR (GLGF/PDZ) domain. Recessive lethal mutations in the discs large tumor suppressor gene interfere with the formation of septate junctions (thought to be the arthropod equivalent of tight junctions) between epithelial cells, and they cause neoplastic overgrowth of imaginal discs, suggesting a role for cell junctions in proliferation control. A homologue of the Dlg protein, named Hdlg, has been isolated from human B lymphocytes. It shows 65-79% identity to Dlg in the different domains, and it binds to the cytoskeletal protein 4.1. Here, we report that the gene for lymphocyte Hdlg, named DLG1, is located at chromosome band 3q29. This finding identifies a novel site for a candidate tumor suppressor on chromosome 3.  相似文献   
9.
In order to cope up with the reactive oxygen species (ROS) generated by host innate immune response, most of the intracellular organisms express Catalase for the enzymatic destruction/detoxification of hydrogen peroxide, to combat its deleterious effects. Catalase thus, scavenges ROS thereby playing a pivotal role in facilitating the survival of the pathogen within the host, and thus contributes to its pathogenesis. Bacillus anthracis harbors five isoforms of Catalase, but none of them has been studied so far. Thus, this study is the first attempt to delineate the biochemical and functional characteristics of one of the isoforms of Catalase (Cat1.4) of B. anthracis, followed by identification of residues critical for catalysis. The general strategy used, so far for mutational analysis in Catalases is structure based, i.e. the residues in the vicinity of heme were mutated to decipher the enzymatic mechanism. However, in the present study, protein sequence analysis was used for the prediction of catalytically important residues of Catalase. Essential measures were adopted to ensure the accuracy of predictions like after retrieval of well-annotated sequences from the database with EC 1.11.1.6, preprocessing was done to remove irrelevant sequences. The method used for multiple alignment of sequences, was guided by structural alignment and thereafter, an information theoretic measure, Relative Entropy was used for the critical residue prediction. By exploiting this strategy, we identified two previously known essential residues, H55 and Y338 in the active site which were demonstrated to be crucial for the activity. We also identified six novel crucial residues (Q332, Y117, H215, W257, N376 and H146) located distantly from the active site. Thus, the present study highlights the significance of this methodology to identify not only those crucial residues which lie in the active site of Catalase, but also the residues located distantly.  相似文献   
10.
Chloroplast biogenesis requires synthesis of proteins in the nucleocytoplasm and the chloroplast itself. Nucleus-encoded chloroplast proteins are imported via multiprotein translocons in the organelle’s envelope membranes. Controversy exists around whether a 1-MDa complex comprising TIC20, TIC100, and other proteins constitutes the inner membrane TIC translocon. The Arabidopsis thaliana cue8 virescent mutant is broadly defective in plastid development. We identify CUE8 as TIC100. The tic100cue8 mutant accumulates reduced levels of 1-MDa complex components and exhibits reduced import of two nucleus-encoded chloroplast proteins of different import profiles. A search for suppressors of tic100cue8 identified a second mutation within the same gene, tic100soh1, which rescues the visible, 1 MDa complex-subunit abundance, and chloroplast protein import phenotypes. tic100soh1 retains but rapidly exits virescence and rescues the synthetic lethality of tic100cue8 when retrograde signaling is impaired by a mutation in the GENOMES UNCOUPLED 1 gene. Alongside the strong virescence, changes in RNA editing and the presence of unimported precursor proteins show that a strong signaling response is triggered when TIC100 function is altered. Our results are consistent with a role for TIC100, and by extension the 1-MDa complex, in the chloroplast import of photosynthetic and nonphotosynthetic proteins, a process which initiates retrograde signaling.

Complementary mutations in TIC100 of the chloroplast inner envelope membrane cause reductions or corrective improvements in chloroplast protein import, and highlight a signaling role.

IN A NUTSHELLBackground: Plants harvest energy from the sun and CO2 from the air and convert them into the energy-rich molecules they, and eventually us, are made of. Plants do this, photosynthesis, in bodies called chloroplasts inside their cells. Chloroplasts, made of protein and membrane material, were, before plants evolved, free-living bacteria, but the synthesis of most of their proteins occurs outside them, using information carried by the cell’s nuclear DNA, so most proteins have to be brought into developing chloroplasts, across the double membrane surrounding them, through dedicated, selective channels, formed by TOC (outer) and TIC (inner envelope) proteins. The identity of those channels matters as it helps determine versions of chloroplasts suited for particular environments. Which TIC proteins constitute the inner envelope channel has been a matter of controversy.Question: A mutant Arabidopsis plant called cue8 is slow-to-green (young leaves begin almost white) and shows delayed chloroplast and plant development. We looked for the molecular identity of the CUE8 gene. We also caused further mutations in this mutant and searched whether any corrected the defects in cue8.Findings: We found the mutated gene causing the cue8 defects is the TIC100 gene. This is one essential component of the “TIC 1-MDa complex,” one of the two versions of the TIC import complex under debate. That complex is made of several proteins, all present at reduced levels in cue8. In laboratory assays in which proteins are imported into isolated chloroplasts, cue8 performed worse than normal plants for a photosynthetic and a housekeeping chloroplast protein. A corrective, “suppressor” mutant was identified, and it carried a second mutation in TIC100, one physically complementary to the first one. Both the single and the double (suppressed) mutant still were slow-to-green, which evidences a signaling role for import defects to the nucleus, making photosynthetic genes active or not.Next steps: Surprisingly the grasses, including the cereals, have one core protein of the TIC 1 MDa complex but not the rest (including TIC100). We don’t know how their TIC channels operate. We also need to learn how the information on the defect in protein import, which occurs at the chloroplast envelope, is relayed to the cell’s nucleus (but we do have some clues).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号