首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2015年   1篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Mitochondrial targeting of antioxidants has been an area of interest due to the mitochondria''s role in producing and metabolizing reactive oxygen species. Antioxidants, especially vitamin E (α-tocopherol), have been conjugated to lipophilic cations to increase their mitochondrial targeting. Synthetic vitamin E analogues have also been produced as an alternative to α-tocopherol. In this paper, we investigated the mitochondrial targeting of a vitamin E metabolite, 2,5,7,8-tetramethyl-2-(2′-carboxyethyl)-6-hydroxychroman (α-CEHC), which is similar in structure to vitamin E analogues. We report a fast and efficient method to conjugate the water-soluble metabolite, α-CEHC, to triphenylphosphonium cation via a lysine linker using solid phase synthesis. The efficacy of the final product (MitoCEHC) to lower oxidative stress was tested in bovine aortic endothelial cells. In addition the ability of MitoCEHC to target the mitochondria was examined in type 2 diabetes db/db mice. The results showed mitochondrial accumulation in vivo and oxidative stress decrease in vitro.  相似文献   
2.
Helicobacter pylori (H. pylori) causes gastric mucosa inflammation and gastric cancer mostly via several virulence factors. Induction of proinflammatory pathways plays a crucial role in chronic inflammation, gastric carcinoma, and H. pylori pathogenesis. Herbal medicines (HMs) are nontoxic, inexpensive, and mostly anti-inflammatory reminding meticulous emphasis on the elimination of H. pylori and gastric cancer. Several HM has exerted paramount anti-H. pylori traits. In addition, they exert anti-inflammatory effects through several cellular circuits such as inhibition of 5′-adenosine monophosphate-activated protein kinase, nuclear factor-κB, and activator protein-1 pathway activation leading to the inhibition of proinflammatory cytokines (interleukin 1α [IL-1α], IL-1β, IL-6, IL-8, IL-12, interferon γ, and tumor necrosis factor-α) expression. Furthermore, they inhibit nitrous oxide release and COX-2 and iNOS activity. The apoptosis induction in Th1 and Th17-polarized lymphocytes and M2-macrophagic polarization and STAT6 activation has also been exhibited. Thus, their exact consumable amount has not been revealed, and clinical trials are needed to achieve optimal concentration and their pharmacokinetics. In the aspect of bioavailability, solubility, absorption, and metabolism of herbal compounds, nanocarriers such as poly lactideco-glycolide-based loading and related formulations are helpful. Noticeably, combined therapies accompanied by probiotics can also be examined for better clearance of gastric mucosa. In addition, downregulation of inflammatory microRNAs (miRNAs) by HMs and upregulation of those anti-inflammatory miRNAs is proposed to protect the gastric mucosa. Thus there is anticipation that in near future HM-based formulations and proper delivery systems are possibly applicable against gastric cancer or other ailments because of H. pylori.  相似文献   
3.
Excessive use of antibiotics in recent years has produced bacteria that are resistant to a wide array of antibiotics. Several genetic and non-genetic elements allow microorganisms to adapt and thrive under harsh environmental conditions such as lethal doses of antibiotics. We attempt to classify these microorganisms as antibiotic-resistant extremophiles (AREs). AREs develop strategies to gain greater resistance to antibiotics via accumulation of multiple genes or plasmids that harbor genes for multiple drug resistance (MDR). In addition to their altered expression of multiple genes, AREs also survive by producing enzymes such as penicillinase that inactivate antibiotics. It is of interest to identify the underlying molecular mechanisms by which the AREs are able to survive in the presence of wide arrays of high-dosage antibiotics. Technologically, "omics"-based approaches such as genomics have revealed a wide array of genes differentially expressed in AREs. Proteomics studies with 2DE, MALDI-TOF, and MS/MS have identified specific proteins, enzymes, and pumps that function in the adaptation mechanisms of AREs. This article discusses the molecular mechanisms by which microorganisms develop into AREs and how "omics" approaches can identify the genetic elements of these adaptation mechanisms. These objectives will assist the development of strategies and potential therapeutics to treat outbreaks of pathogenic microorganisms in the future.  相似文献   
4.
5.
Over the past three decades, the increasing rates of obesity have led to an alarming obesity epidemic worldwide. Obesity is associated with an increased risk of cardiovascular diseases; thus, it is essential to define the molecular mechanisms by which obesity affects heart function. Individuals with obesity and overweight have shown changes in cardiac structure and function, leading to cardiomyopathy, hypertrophy, atrial fibrillation, and arrhythmia. Autophagy is a highly conserved recycling mechanism that delivers proteins and damaged organelles to lysosomes for degradation. In the hearts of patients and mouse models with obesity, this process is impaired. Furthermore, it has been shown that autophagy flux restoration in obesity models improves cardiac function. Therefore, autophagy may play an important role in mitigating the adverse effects of obesity on the heart. Throughout this review, we will discuss the benefits of autophagy on the heart in obesity and how regulating autophagy might be a therapeutic tool to reduce the risk of obesity‐associated cardiovascular diseases.  相似文献   
6.
Micro‐organisms with the ability to survive in extreme environmental conditions are known as ‘extremophiles’. Currently, extremophiles have caused a sensation in the biotechnology/pharmaceutical industries with their novel compounds, known as ‘extremolytes’. The potential applications of extremolytes are being investigated for human therapeutics including anticancer drugs, antioxidants, cell cycle‐blocking agents, anticholesteric drugs, etc. It is hypothesized that the majority of ultraviolet radiation (UVR)‐resistant micro‐organisms can be used to develop anticancer drugs to prevent skin damage from UVR. The metabolites from UVR‐resistant microbes are a great source of potential therapeutic applications in humans. This article aims to discuss the potentials of extremolytes along with their therapeutic implications of UVR extremophiles. The major challenges of therapeutic development using extremophiles are also discussed.  相似文献   
7.
Molecular Biology Reports - Diffuse Large B-cell lymphoma (DLBCL) is an aggressive disease with heterogeneous outcome and marked variable response to chemotherapy. We assessed promoter...  相似文献   
8.
Hexavalent (VI) chromium is a global contaminant with cytotoxic activity. Chromium (VI) induces oxidative stress, inflammation, cell proliferation, malignant transformation and may trigger carcinogenesis and at the same time apoptosis. The toxic effects of chromium (VI) at least partially result from mitochondrial injury and DNA damage. Erythrocytes lack mitochondria and nuclei but may experience an apoptosis-like suicidal cell death, i.e. eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Eryptosis may result from increase of cytosolic Ca2+ activity, ATP depletion and/or ceramide formation. The present study explored, whether chromium (VI) triggers eryptosis. Fluo-3-fluorescence was employed to determine cytosolic Ca2+-concentration, forward scatter to estimate cell volume, binding of fluorescent annexin V to detect phosphatidylserine exposure, hemoglobin concentration in the supernatant to quantify hemolysis, luciferin–luciferase to determine cytosolic ATP concentration and fluorescent anti-ceramide antibodies to uncover ceramide formation. A 48 h exposure to chromium (VI) (≥10 μM) significantly increased cytosolic Ca2+-concentration, decreased ATP concentration (20 μM), decreased forward scatter, increased annexin V-binding and increased (albeit to a much smaller extent) hemolysis. Chromium (VI) did not significantly modify ceramide formation. The effect of 20 μM chromium (VI) on annexin V binding was partially reversed in the nominal absence of Ca2+. The present observations disclose a novel effect of chromium (VI), i.e. Ca2+ entry and cytosolic ATP depletion in erythrocytes, effects resulting in eryptosis with cell shrinkage and cell membrane scrambling.  相似文献   
9.
This study investigates the use of saliva, as an emerging diagnostic fluid in conjunction with classification techniques to discern biological heterogeneity in clinically labelled gingivitis and periodontitis subjects (80 subjects; 40/group) A battery of classification techniques were investigated as traditional single classifier systems as well as within a novel selective voting ensemble classification approach (SVA) framework. Unlike traditional single classifiers, SVA is shown to reveal patient-specific variations within disease groups, which may be important for identifying proclivity to disease progression or disease stability. Salivary expression profiles of IL-1ß, IL-6, MMP-8, and MIP-1α from 80 patients were analyzed using four classification algorithms (LDA: Linear Discriminant Analysis [LDA], Quadratic Discriminant Analysis [QDA], Naïve Bayes Classifier [NBC] and Support Vector Machines [SVM]) as traditional single classifiers and within the SVA framework (SVA-LDA, SVA-QDA, SVA-NB and SVA-SVM). Our findings demonstrate that performance measures (sensitivity, specificity and accuracy) of traditional classification as single classifier were comparable to that of the SVA counterparts using clinical labels of the samples as ground truth. However, unlike traditional single classifier approaches, the normalized ensemble vote-counts from SVA revealed varying proclivity of the subjects for each of the disease groups. More importantly, the SVA identified a subset of gingivitis and periodontitis samples that demonstrated a biological proclivity commensurate with the other clinical group. This subset was confirmed across SVA-LDA, SVA-QDA, SVA-NB and SVA-SVM. Heatmap visualization of their ensemble sets revealed lack of consensus between these subsets and the rest of the samples within the respective disease groups indicating the unique nature of the patients in these subsets. While the source of variation is not known, the results presented clearly elucidate the need for novel approaches that accommodate inherent heterogeneity and personalized variations within disease groups in diagnostic characterization. The proposed approach falls within the scope of P4 medicine (predictive, preventive, personalized, and participatory) with the ability to identify unique patient profiles that may predict specific disease trajectories and targeted disease management.  相似文献   
10.
Molecular and Cellular Biochemistry - Gelsolin, an actin-binding protein, is localized intra- and extracellularly in the bloodstream and throughout the body. Gelsolin amyloidosis is a disease...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号