首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   1篇
  2022年   1篇
  2021年   6篇
  2020年   3篇
  2019年   7篇
  2018年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   4篇
  2004年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
Gastric cancer is the third leading cause of cancer death with 5-year survival rate of about 30–35%. Since early detection is associated with decreased mortality, identification of novel biomarkers for early diagnosis and proper management of patients with the best response to therapy is urgently needed. Long noncoding RNAs (lncRNAs) due to their high specificity, easy accessibility in a noninvasive manner, as well as their aberrant expression under different pathological and physiological conditions, have received a great attention as potential diagnostic, prognostic, or predictive biomarkers. They may also serve as targets for treating gastric cancer. In this review, we highlighted the role of lncRNAs as tumor suppressors or oncogenes that make them potential biomarkers for the diagnosis and prognosis of gastric cancer. Relatively, lncRNAs such as H19, HOTAIR, UCA1, PVT1, tissue differentiation-inducing nonprotein coding, and LINC00152 could be potential diagnostic and prognostic markers in patients with gastric cancer. Also, the impact of lncRNAs such as ecCEBPA, MLK7-AS1, TUG1, HOXA11-AS, GAPLINC, LEIGC, multidrug resistance-related and upregulated lncRNA, PVT1 on gastric cancer epigenetic and drug resistance as well as their potential as therapeutic targets for personalized medicine was discussed.  相似文献   
2.
Six new azo dyes containing of 5(4H)-oxazolone ring were prepared by diazotization of 4-aminohippuric acid and coupling with N,N-dimethylaniline, 1-naphthol and 2-naphthol and condensation with 4-fluoro benzaldehyde or 4-trifluoromethoxy benzaldehyde. The new compounds were fully characterized by spectroscopic techniques. All synthesized compounds exhibited high tyrosinase inhibitory behavior. The results of mushroom tyrosinase inhibition assays indicate that the 4-trifluoromethoxy derivatives have high degrees of inhibition and N,N-dimethylaniline derivatives are better for tyrosinase inhibition than 1-naphthol and 2-naphthol derivatives. All synthesized azo compounds (4a4f) showed the most potent mushroom tyrosinase inhibition, comparable to that of Kojic acid and l-mimosine, as reference standard inhibitors.  相似文献   
3.
Gastric cancer is a life-threatening disease; resulting from interaction among genetic, epigenetic, and environmental factors. Aberrant dysregulation and methylation changes in Wnt/β-catenin signaling downstream elements are a prevalent phenomenon encountered in gastric tumorigenesis. Also, viral infections play a role in gastric cancer development. CTNNBIP1 (β-catenin interacting protein 1) gene is an antagonist of Wnt signaling which binds to the β-catenin molecules. The CTNNBIP1 function as tumor suppressor gene or oncogene in different types of cancer is controversial. Moreover, its function and regulatory mechanisms in gastric cancer progression is unknown. In the present study, we examined CTNNBIP1 gene expression, the methylation status of the regulatory region of the gene, and their association with Epstein–Barr virus (EBV), and cytomegalovirus (CMV) and Helicobacter pylori infections in human gastric adenocarcinoma tissues in comparison with their adjacent nontumoral tissues. Our data revealed a significant downregulation of CTNNBIP1 in gastric tumors. Female patients showed lower level of CTNNBIP1 than males (p < 0.05). Also, decreased expression of CTNNBIP1 was markedly associated with well-differentiated tumor grades (p < 0.05). No methylation change was observed between tumoral and nontumoral tissues. Additionally, CTNNBIP1 down regulation was significantly associated with CMV infection (p < 0.05). In the absence of EBV infection, lower expression of CTNNBIP1 was observed. There was no association between H. pylori infection and CTNNBIP1 expression. Our findings revealed the tumor suppressor role for CTNNBIP1 in gastric adenocarcinoma. Interestingly, EBV and CMV infections modulate CTNNBIP1 expression.  相似文献   
4.
5.
6.
In this paper, a most sensitive electrochemical biosensor for detection of prostate‐specific antigen (PSA) was designed. To reach the goal, a sandwich type electrode composed of reduced graphene oxide/ gold nanoparticles (GO/AuNPs), Anti‐Total PSA monoclonal antibody, and anti‐Free PSA antibody was assembled. The functionalized materials were thoroughly characterized by atomic force microscope spectroscopy, transmission electron microscopy, and X‐ray diffraction techniques. The electrochemical properties of each of the modification step were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The results presented that the proposed biosensor possesses high sensitivity toward total and free PSA. Furthermore, the fabricated biosensor revealed an excellent selectivity for PSA in comparison to the other tumor markers such as BHCG, Alb, CEA, CA125, and CA19‐9. The limit of detection for the proposed electrochemical biosensor was estimated to be around 0.2 and 0.07 ng/mL for total and free PSA antigen, respectively.  相似文献   
7.
Plant Growth Regulation - Nanotechnology has provided advancement opportunities in different fields of sciences related to plants such as agriculture. Plants are one of the most critical components...  相似文献   
8.
A series of novel metronidazole aryloxy, carboxy and azole derivatives has been synthesized and their cytotoxic activities on three cancer cell lines were evaluated by MTT assay. Compounds 4m, 4l and 4d showed the most potent cytotoxic activity (IC50s?less than?100?µg/mL). Apoptosis was also detected for these compounds by flow cytometry. Docking studies were performed in order to propose the probable target protein. In the next step, molecular dynamics simulation was carried out on the proposed target protein, focal adhesion kinase (FAK, PDB code: 2ETM), bound to compound 4m. As, 4m showed a potent cytotoxic activity and an acceptable apoptotic effect, it can be a potential anticancer candidate that may work through inhibition of FAK.  相似文献   
9.
The tau protein is central to the etiology of several neurodegenerative diseases, including Alzheimer''s disease, a subset of frontotemporal dementias, progressive supranuclear palsy and dementia following traumatic brain injury, yet the proteins it interacts with have not been studied using a systematic discovery approach. Here we employed mild in vivo crosslinking, isobaric labeling, and tandem mass spectrometry to characterize molecular interactions of human tau in a neuroblastoma cell model. The study revealed a robust association of tau with the ribonucleoproteome, including major protein complexes involved in RNA processing and translation, and documented binding of tau to several heat shock proteins, the proteasome and microtubule-associated proteins. Follow-up experiments determined the relative contribution of cellular RNA to the tau interactome and mapped interactions to N- or C-terminal tau domains. We further document that expression of P301L mutant tau disrupts interactions of the C-terminal half of tau with heat shock proteins and the proteasome. The data are consistent with a model whereby a higher propensity of P301L mutant tau to aggregate may reflect a perturbation of its chaperone-assisted stabilization and proteasome-dependent degradation. Finally, using a global proteomics approach, we show that heterologous expression of a tau construct that lacks the C-terminal domain, including the microtubule binding domain, does not cause a discernible shift of the proteome except for a significant direct correlation of steady-state levels of tau and cystatin B.The tau protein is a member of the family of microtubule-associated proteins (MAPs)1 that in humans is coded by the MAPT gene on chromosome 17q21.31 (1). Initially, described as a factor that binds to and stabilizes microtubules (MTs) (2), interest in the tau protein grew when it was shown to represent the main constituent of intracellular protein aggregates, termed neurofibrillary tangles (NFTs), observed in Alzheimer''s disease (3, 4). Similar tau aggregates have since been described in other, less common dementias, including progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), Pick''s disease and dementia pugilistica, a form of dementia observed in athletes who had been exposed to repeated traumatic brain injury (5).Despite its early recognition as a MT binding molecule, the physiological function of the tau protein is still being debated (6). At least, in part, this uncertainty is born from the observation that tau knockout mice are rather nonconspicuous in their phenotype (7, 8). Ongoing attempts to define additional roles for this protein have, over the years, generated several hypotheses, including that the tau protein modulates neurite outgrowth and axonogenesis (8, 9), bridges the microtubule and actin cytoskeletons (10), and acts as a scaffold for tethering the Src family tyrosine kinase Fyn to PSD-95/NMDA receptor complexes (11). The predominant expression of tau in neuronal axons suggests a role in brain function. Significantly, in all tauopathies, a group term used to describe dementias with pathological tau protein involvement, the tau protein is observed to detach from microtubules and to form aggregates. There also is compelling evidence from a body of work with transgenic models that the cellular toxicity observed in the aforementioned dementias relies on the presence of the tau protein (12). Consequently, it seems plausible that the cellular toxicity observed in AD and other dementias does not relate to a loss of function of the tau protein but represents a gain of toxic function the protein exhibits in its microtubule-detached form.The tau molecule can be crudely subdivided into an amino-terminal projection domain (PD), a microtubule-binding domain (MTB), and a carboxy-terminal domain (C'') (13). The protein has long been known to exhibit some remarkable biochemical characteristics, including an ability to withstand harsh acid and heat treatments that would cause a majority of other proteins to precipitate (2, 14). These characteristics have been attributed to tau being natively unfolded and possessing a highly dynamic character (15). The tau protein is also known to be a substrate for several post-translational modifications (PTMs), and the list of tau modifying enzymes that have been described is long. In particular, tau phosphorylation has been recognized to occur in vivo and in disease, and tau hyperphosphorylation at sites within the MTB domain and at nearby sites flanking the MTB has been shown to promote detachment of tau from microtubules (16). There further is broad agreement in the field that levels of several other tau PTMs are raised in tauopathies, including nitration (17), ubiquitination (18), sumoylation (19), and truncation (20, 21). Less agreement exists on the degree to which specific PTMs contribute to disease manifestation in individual tauopathies (22). Lacking also are insights into other physiological protein interactions the tau protein engages in and, surprisingly, to our knowledge, no systematic screen for tau binders has been reported. Thus, except for its well-established binding to microtubules (2), members of the Src family of protein kinases (23, 24), Hsp70 (25)/Hsp90 (26, 27), and reports on its interaction with F-actin (28), ApoE3 (29), a subset of peptidyl-prolyl cis-trans isomerases (30, 31), α-synuclein (32), PACSIN1 (33), and negatively charged polymers, including nucleic acids (34, 35), relatively little is known about other nonenzymatic interactions the protein engages in.In an attempt to address this unmet need, we set out to define molecular interactors of the tau protein in the human neuroblastoma SH-SY5Y cell model. The study made use of advanced instrumentation and workflows that included comparative mass spectrometry based on isobaric tags. We observed that the tau interactome is dramatically enriched in cellular components involved in the regulation and execution of RNA-processing and translation. We document that the previously known ability of the tau protein to bind to nucleic acids is partially responsible but not sufficient by itself to explain this binding propensity of the tau protein. We narrowed down the binding preference of individual binders to N- and C-terminal domains within tau and document that several interactors, including 14-3-3 proteins, heat shock proteins, and the proteasome, exhibit a strong binding preference for the C terminus of tau. When comparing the interactomes of wild-type and mutant tau (P301L) linked to frontotemporal dementia, we observed that interactions with the aforementioned C-terminal tau binding partners are diminished for mutant tau. Despite the strong binding of tau to the ribonucleoproteome, its overexpression does not seem to affect the global steady-state levels of cellular proteins, and only the levels of cystatin B, a natural inhibitor of cysteine proteases, were modified and correlated directly with the levels of heterologously expressed tau.  相似文献   
10.
Phytochemicals from Pseuduvaria species have been reported to display a wide range of biological activities. In the present study, a known benzopyran derivative, (6E,10E) isopolycerasoidol (1), and a new benzopyran derivative, (6E,10E) isopolycerasoidol methyl ester (2), were isolated from a methanol extract of Pseuduvaria monticola leaves. The structures of the isolated compounds were elucidated by spectroscopic methods including 1D and 2D NMR, IR, UV, and LCMS-QTOF, and by comparison with previously published data. The anti-proliferative and cytotoxic effects of these compounds on human breast cancer cell-lines (MCF-7 and MDA-MB-231) and a human normal breast epithelial cell line (MCF-10A) were investigated. MTT results revealed both (1) and (2) were efficient in reducing cell viability of breast cancer cells. Flow cytometry analysis demonstrated that (1) and (2) induced cell death via apoptosis, as demonstrated by an increase in phosphotidylserine exposure. Both compounds elevated ROS production, leading to reduced mitochondrial membrane potential and increased plasma membrane permeability in breast cancer cells. These effects occurred concomitantly with a dose-dependent activation of caspase 3/7 and 9, a down-regulation of the anti-apoptotic gene BCL2 and the accumulation of p38 MAPK in the nucleus. Taken together, our data demonstrate that (1) and (2) induce intrinsic mitochondrial-mediated apoptosis in human breast cancer cells, which provides the first pharmacological evidence for their future development as anticancer agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号