首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   2篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
排序方式: 共有15条查询结果,搜索用时 46 毫秒
1.
Survivin is a member of the family of apoptosis inhibitory proteins with increased expression level in most cancerous tissues. Evidence shows that survivin plays regulatory roles in proliferation or survival of normal adult cells, principally vascular endothelial cells, T lymphocytes, primitive hematopoietic cells, and polymorphonuclear neutrophils. Survivin antiapoptotic role is, directly and indirectly, related to caspase proteins and shows its role in cell division through the chromosomal passenger complex. Survivin contains many genetic polymorphisms that the role of some variations has been proven in several cancers. The −31G/C polymorphism is one of the most important survivin mutations which is located in the promoter region on a CDE/CHR motif. This polymorphism can upregulate the survivin messenger RNA. In addition, its allele C can increase the risk of cancers in 1.27-fold than allele G. Considering the fundamental role of survivin in different cancers, this protein could be considered as a new therapeutic target in cancer treatment. For this purpose, various strategies have been designed including the prevention of survivin expression through inhibition of mRNA translation using antagonistic molecules, inhibition of survivin gene function through small inhibitory molecules, gene therapy, and immunotherapy. In this study, we describe the structure, played roles in physiological and pathological states and genetic polymorphisms of survivin. Finally, the role of survivin as a potential target in cancer therapy given challenges ahead has been discussed.  相似文献   
2.
One of the most outstanding properties of TiO2 nanosheets is their lack of harmful effects on the public health and environment, which makes them an appropriate agent for medical applications such as drug delivery. Interaction of an RNA aptamer with (1 0 1), (1 0 0) and (1 1 0) surfaces of TiO2 anatase were investigated using the molecular dynamics simulation. The structural parameters including root-mean-square deviation and fluctuation, and the distance between the center-of-mass of RNA aptamer and the considered surfaces were discussed in detail. Besides, the effect of water between adsorbed aptamer and surface was investigated and analyzed by the help of dipole moment orientation, hydrogen bonds and density profile of these water molecules. Analysis of the structural parameters and interaction energies shows that the (1 1 0) surface is energetically more favorable for the adsorption of considered RNA aptamer than the (1 0 0) and (1 0 1) surfaces. Consequently, our results suggest a great potential of (1 1 0) surface of TiO2 as an efficient candidate for drug delivery applications.  相似文献   
3.
As the major structural constituent of the cytoskeleton, microtubules (MTs) serve a variety of biological functions that range from facilitating organelle transport to maintaining the mechanical integrity of the cell. Neuronal MTs exhibit a distinct configuration, hexagonally packed bundles of MT filaments, interconnected by MT-associated protein (MAP) tau. Building on our previous work on mechanical response of axonal MT bundles under uniaxial tension, this study is focused on exploring the compression scenarios. Intracellular MTs carry a large fraction of the compressive loads sensed by the cell and therefore, like any other column-like structure, are prone to substantial bending and buckling. Various biological activities, e.g., actomyosin contractility and many pathological conditions are driven or followed by bending, looping, and buckling of MT filaments. The coarse-grained model previously developed in our lab has been used to study the mechanical behavior of individual and bundled in vivo MT filaments under uniaxial compression. Both configurations show tip-localized, decaying, and short-wavelength buckling. This behavior highlights the role of the surrounding cytoplasm and MAP tau on MT buckling behavior, which allows MT filaments to bear much larger compressive forces. It is observed that MAP tau interconnections improve this effect by a factor of two. The enhanced ability of MT bundles to damp buckling waves relative to individual MT filaments, may be interpreted as a self-defense mechanism because it helps axonal MTs to endure harsher environments while maintaining their function. The results indicate that MT filaments in a bundle do not buckle simultaneously implying that the applied stress is not equally shared among the MT filaments, that is a consequence of the nonuniform distribution of MAP tau proteins along the bundle length. Furthermore, from a pathological perspective, it is observed that axonal MT bundles are more vulnerable to failure in compression than tension.  相似文献   
4.
Human CCRL1 belongs to the family of silent chemokine receptors. This transmembrane protein plays a role in blunting function of chemokines through binding to them. This will attenuate immune responses. Interaction between CCRL1 and CCL21 determines this immune extinction. Thus inhibiting the action of this atypical chemokine seems to stimulate immune responses especially in the case of suppressed and immune deficient conditions. In this study we predicted 3D structure of CCRL1 using comparative modeling and Hiddebn Markov Model algorithm. Final predicted model optimized by Modeller v9.8 and minimized regarding energy level using UCSF chimera candidate version1.5.3. ClasPro webserver was used to find interacting residues between CCRL1 and CCL21. Interacting residues were used as target for chemical inhibitors by simulated docking study. For finding potential inhibitors, library of KEGG compounds screened and 97 obtained chemicals docked against interacting residues between CCRL1- CCL21 and MolDock was used as docking scoring function. Results indicated that Hexadecanal is a potential inhibitor of CCRL1- CCL21 interaction. Inhibition of this interaction will increase intercellular level of CCl21 and interaction between CCL21 and CCR7 causes immune potentiaiton.  相似文献   
5.
6.
The development of new growth hormone (GH) agonists and growth hormone antagonists (GHAs) requires animal models for pre-clinical testing. Ideally, the effects of treatment are monitored using the same pharmacodynamic marker that is later used in clinical practice. However, intact rodents are of limited value for this purpose because serum IGF-I, the most sensitive pharmacodynamic marker for the action of GH in humans, shows no response to treatment with recombinant human GH and there is little evidence for the effects of GHAs, except when administered at very high doses or when overexpressed. As an alternative, more suitable model, we explored pharmacodynamic markers of GH action in intact rabbits. We performed the first validation of an IGF-I assay for the analysis of rabbit serum and tested precision, sensitivity, linearity and recovery using an automated human IGF-I assay (IDS-iSYS). Furthermore, IGF-I was measured in rabbits of different strains, age groups and sexes, and we monitored IGF-I response to treatment with recombinant human GH or the GHA Pegvisomant. For a subset of samples, we used LC-MS/MS to measure IGF-I, and quantitative western ligand blot to analyze IGF-binding proteins (IGFBPs). Although recovery of recombinant rabbit IGF-I was only 50% in the human IGF-I assay, our results show that the sensitivity, precision (1.7–3.3% coefficient of variation) and linearity (90.4–105.6%) were excellent in rabbit samples. As expected, sex, age and genetic background were major determinants of IGF-I concentration in rabbits. IGF-I and IGFBP-2 levels increased after single and multiple injections of recombinant human GH (IGF-I: 286±22 versus 434±26 ng/ml; P<0.01) and were highly correlated (P<0.0001). Treatment with the GHA lowered IGF-I levels from the fourth injection onwards (P<0.01). In summary, we demonstrated that the IDS-iSYS IGF-I immunoassay can be used in rabbits. Similar to rodents, rabbits display variations in IGF-I depending on sex, age and genetic background. Unlike in rodents, the IGF-I response to treatment with recombinant human GH or a GHA closely mimics the pharmacodynamics seen in humans, suggesting that rabbits are a suitable new model to test human GH agonists and antagonists.KEY WORDS: Pharmacodynamic marker, Acromegaly, Growth hormone deficiency, Animal model  相似文献   
7.
In this study, a numerical investigation is performed to evaluate the effects of high-pressure sinusoidal and blast wave's propagation around and inside of a human external ear. A series of computed tomography images are used to reconstruct a realistic three-dimensional (3D) model of a human ear canal and the auricle. The airflow field is then computed by solving the governing differential equations in the time domain using a computational fluid dynamics software. An unsteady algorithm is used to obtain the high-pressure wave propagation throughout the ear canal which is validated against the available analytical and numerical data in literature. The effects of frequency, wave shape, and the auricle on pressure distribution are then evaluated and discussed. The results clearly indicate that the frequency plays a key role on pressure distribution within the ear canal. At 4 kHz frequency, the pressure magnitude is much more amplified within the ear canal than the frequencies of 2 and 6 kHz, for the incident wave angle of 90° investigated in this study, attributable to the ‘4-kHz notch’ in patients with noise-induced hearing loss. According to the results, the pressure distribution patterns at the ear canal are very similar for both sinusoidal pressure waveform with the frequency of 2 kHz and blast wave. The ratio of the peak pressure value at the eardrum to that at the canal entrance increases from about 8% to 30% as the peak pressure value of the blast wave increases from 5 to 100 kPa for the incident wave angle of 90° investigated in this study. Furthermore, incorporation of the auricle to the ear canal model is associated with centerline pressure magnitudes of about 50% and 7% more than those of the ear canal model without the auricle throughout the ear canal for sinusoidal and blast waves, respectively, without any significant effect on pressure distribution pattern along the ear canal for the incident wave angle of 90° investigated in this study.  相似文献   
8.
Diamine‐sarcophagine (DiAmsar) binding to human serum albumin (HSA) and bovine serum albumin (BSA) was investigated under simulative physiological conditions. Fluorescence spectra in combination with Fourier transform infrared (FT‐IR), UV‐visible (UV–vis) spectroscopy, cyclic voltammetry (CV), and molecular docking method were used in the present work. Experimental results revealed that DiAmsar had an ability to quench the HSA and BSA intrinsic fluorescence through a static quenching mechanism. The Stern–Volmer quenching rate constant (Ksv) was calculated as 0.372 × 103 M‐1 and 0.640 × 103 M‐1 for HSA and BSA, respectively. Moreover, binding constants (Ka), number of binding sites (n) at different temperatures, binding distance (r), and thermodynamic parameters (?H°, ?S°, and ?G°) between DiAmsar and HSA (or BSA) were calculated. DiAmsar exhibited good binding propensity to HSA and BSA with relatively high binding constant values. The positive ?H° and ?S° values indicated that the hydrophobic interaction is main force in the binding of the DiAmsar to HSA (or BSA). Furthermore, molecular docking results revealed the possible binding site and the microenvironment around the bond. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
9.
Nucleocytoplasmic transport has been the subject of a large body of research in the past few decades. Recently, the focus of investigations in this field has shifted from studies of the overall function of the nuclear pore complex (NPC) to the examination of the role of different domains of phenylalanine-glycine nucleoporin (FG Nup) sequences on the NPC function. In our recent bioinformatics study, we showed that FG Nups have some evolutionarily conserved sequence-based features that might govern their physical behavior inside the NPC. We proposed the ‘like charge regions’ (LCRs), sequences of charged residues with only one type of charge, as one of the features that play a significant role in the formation of FG network inside the central channel. In this study, we further explore the role of LCRs in the distribution of FG Nups, using a recently developed coarse-grained molecular dynamics model. Our results demonstrate how LCRs affect the formation of two transport pathways. While some FG Nups locate their FG network at the center of the NPC forming a homogeneous meshwork of FG repeats, other FG Nups cover the space adjacent to the NPC wall. LCRs in the former group, i.e. FG Nups that form an FG domain at the center, tend to regulate the size of the highly dense, doughnut-shaped FG meshwork and leave a small low FG density area at the center of the pore for passive diffusion. On the other hand, LCRs in the latter group of FG Nups enable them to maximize their interactions and cover a larger space inside the NPC to increase its capability to transport numerous cargos at the same time. Finally, a new viewpoint is proposed that reconciles different models for the nuclear pore selective barrier function.  相似文献   
10.
Matrix metalloproteinase (MMPs) and disintegrin and metalloprotease (ADAMs) belong to the zinc-dependent metalloproteinase family of proteins. These proteins participate in various physiological and pathological states. Thus, prediction of these proteins using amino acid sequence would be helpful. We have developed a method to predict these proteins based on the features derived from Chou’s pseudo amino acid composition (PseAAC) server and support vector machine (SVM) as a powerful machine learning approach. With this method, for ADAMs and MMPs families, an overall accuracy and Matthew’s correlation coefficient (MCC) of 95.89 and 0.90% were achieved respectively. Furthermore, the method is able to predict two major subclasses of MMP family; Furin-activated secreted MMPs and Type II trans-membrane; with MCC of 0.89 and 0.91%, respectively. The overall accuracy for Furin-activated secreted MMPs and Type II trans-membrane was 98.18 and 99.07, respectively. Our data demonstrates an effective classification of Metalloproteinase family based on the concept of PseAAC and SVM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号