首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   13篇
  2022年   1篇
  2021年   2篇
  2018年   3篇
  2016年   1篇
  2015年   9篇
  2014年   2篇
  2013年   4篇
  2012年   14篇
  2011年   7篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   13篇
  2006年   7篇
  2005年   2篇
  2004年   4篇
  2003年   4篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1986年   6篇
  1985年   1篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
排序方式: 共有123条查询结果,搜索用时 31 毫秒
1.
2.
Previous studies by us and other groups characterized protein expression variation following long-term moderate training, whereas the effects of single bursts of exercise are less known. Making use of a proteomic approach, we investigated the effects of acute swimming exercise (ASE) on protein expression and carbonylation patterns in two hind limb muscles: the Extensor Digitorum Longus (EDL) and the Soleus, mostly composed of fast-twitch and slow-twitch fibres, respectively. Carbonylation is one of the most common oxidative modifications of proteins and a marker of oxidative stress. In fact, several studies suggest that physical activity and the consequent increase in oxygen consumption can lead to increase in reactive oxygen and nitrogen species (RONS) production, hence the interest in examining the impact of RONS on skeletal muscle proteins following ASE. Results indicate that protein expression is unaffected by ASE in both muscle types. Unexpectedly, the protein carbonylation level was reduced following ASE. In particular, the analysis found 31 and 5 spots, in Soleus and EDL muscles respectively, whose carbonylation is reduced after ASE. Lipid peroxidation levels in Soleus were markedly reduced as well. Most of the decarbonylated proteins are involved either in the regulation of muscle contractions or in the regulation of energy metabolism. A number of hypotheses may be advanced to account for such results, which will be addressed in future studies.  相似文献   
3.
Human acylphosphatase (h-AP, EC 3.6.1.7) has been reported to catalyse the hydrolysis of the 1-phosphate group of 1,3-diphosphoglycerate. In vivo operation of this reaction in the yeast Saccharomyces cerevisiae would bypass phosphoglycerate kinase and thus reduce the ATP yield from glycolysis. To investigate whether h-AP can indeed replace the S. cerevisiae phosphoglycerate kinase, a multi-copy plasmid carrying the h-AP gene under control of the yeast TDH3 promoter was introduced into a pgk1 mutant of S. cerevisiae. A strain carrying the expression vector without the h-AP cassette was used as a reference. For both strains, steady-state carbon- and energy-limited chemostat cultures were obtained at a dilution rate of 0.10 h–1on a medium containing a mixture of glucose and ethanol (15% and 85% on a carbon basis, respectively). Although the h-AP strain exhibited a high acylphosphatase activity in cell extracts, switching to glucose as sole carbon and energy source resulted in a complete arrest of glucose consumption and growth. The lack of a functional glycolytic pathway was further evident from the absence of ethanol formation in the presence of excess glucose in the culture. As h-AP cannot replace yeast phosphoglycerate kinase in vivo, the enzyme is not a useful tool to modify the ATP yield of glycolysis in S. cerevisiae.  相似文献   
4.
DNA double-strand breaks are repaired by one of two main pathways, non-homologous end joining or homologous recombination. A competition for binding to DNA ends by Ku and Rad52, proteins required for non-homologous end joining and homologous recombination, respectively, has been proposed to determine the choice of repair pathway. In order to test this idea directly, we compared Ku and human Rad52 binding to different DNA substrates. How ever, we found no evidence that these proteins would compete for binding to the same broken DNA ends. Ku bound preferentially to DNA with free ends. Under the same conditions, Rad52 did not bind preferentially to DNA ends. Using a series of defined substrates we showed that it is single-stranded DNA and not DNA ends that were preferentially bound by Rad52. In addition, Rad52 aggregated DNA, bringing different single-stranded DNAs in close proximity. This activity was independent of the presence of DNA ends and of the ability of the single-stranded sequences to form extensive base pairs. Based on these DNA binding characteristics it is unlikely that Rad52 and Ku compete as ‘gatekeepers’ of different DNA double-strand break repair pathways. Rather, they interact with different DNA substrates produced early in DNA double-strand break repair.  相似文献   
5.
To identify early adaptive processes of cardiac remodeling (CR) in response to volume overload, we investigated the molecular events that may link intracellular Ca(2+) homeostasis alterations and cardiomyocyte apoptosis. In swine heart subjected to aorto-cava shunt for 6, 12, 24, 48 and 96 h sarcoplasmic reticulum (SR) Ca(2+) pump activity was reduced until 48 h (-30%), but a recovery of control values was found at 96 h. The decrease in SR Ca(2+)-ATPase (SERCA2a) expression at 48 h, was more marked (-60%) and not relieved by a subsequent recovery, while phospholamban (PLB) concentration and phosphorylation were unchanged at all the considered times. Conversely, acylphosphatase activity and expression significantly increased from 48 to 96 h (+40%). Bcl-2 expression increased significantly from 6 to 24 h, but at 48 h, returned to control values. At 48 h, microscopic observations showed that overloaded myocardium underwent substantial damage and apoptotic cell death in concomitance with an enhanced Fas/Fas-L expression. At 96 h, apoptosis appeared attenuated, while Fas/Fas-L expression was still higher than control values and cardiomyocyte hypertrophy became to develop. These data suggest that in our experimental model, acylphosphatase could be involved in the recovery of SERCA2a activity, while cardiomyocyte apoptosis might be triggered by a decline in Bcl-2 expression and a concomitant activation of Fas.  相似文献   
6.
To investigate the time sequence of cardiac growth factor formation, echocardiographic and hemodynamic measurements were performed at scheduled times, and mRNAs for angiotensinogen, prepro-endothelin-1 (ppET-1), and insulin-like growth factor I (IGF-I) were quantified with RT-PCR and localized with in situ hybridization in pigs (fluothane anesthesia) by use of pressure or volume overload (aortic banding and aorta-cava fistula, respectively). Relative peptide formation was also measured by radioimmunoassay. In pressure overload, angiotensinogen and ppET-1 mRNA overexpression on myocytes (13 times vs. sham at 3 h and 112 times at 6 h, respectively) was followed by recovery (12 h) of initially decreased (0.5-6 h) myocardial contractility. In volume overload, contractility was not decreased, the angiotensinogen gene was slightly upregulated at 6 h (6.7 times), and ppET-1 was not overexpressed. IGF-I mRNA was overexpressed on myocytes (at 24 h) in both volume and pressure overload (14 times and 37 times, respectively). In the latter setting, a second ppET-1 overexpression was detectable on myocytes at 7 days. In conclusion, acute cardiac adaptation responses involve different growth factor activation over time in pressure versus volume overload; growth factors initially support myocardial contractility and thereafter induce myocardial hypertrophy.  相似文献   
7.
8.
The DNA strand-exchange reactions defining homologous recombination involve transient, nonuniform allosteric interactions between recombinase proteins and their DNA substrates. To study these mechanistic aspects of homologous recombination, we produced functional fluorescent human RAD51 recombinase and visualized recombinase interactions with single DNA molecules in both static and dynamic conditions. We observe that RAD51 nucleates filament formation at multiple sites on double-stranded DNA. This avid nucleation results in multiple RAD51 filament segments along a DNA molecule. Analysis of fluorescent filament patch size and filament kinks from scanning force microscopy (SFM) images indicate nucleation occurs minimally once every 500 bp. Filament segments did not rearrange along DNA, indicating tight association of the ATP-bound protein. The kinetics of filament disassembly was defined by activating ATP hydrolysis and following individual filaments in real time.  相似文献   
9.
Regular physical activity is associated with a reduced risk of coronary heart disease, as it probably modifies the balance between free-radical generation and antioxidant activity. On the other hand, however, acute physical activity increases oxygen uptake and leads to a temporary imbalance between the production of reactive oxygen and nitrogen species (RONS) and their disposal: this phenomenon is called oxidative stress. Proteins are one of the most important oxidation targets during physical exercise and carbonylation is one of the most common oxidative protein modifications. In cells there is a physiological level of oxidized proteins that doesn't interfere with cell function; however, an increase in oxidized protein levels may cause a series of cellular malfunctions that could lead to a disease state. For this reason the quantification of protein oxidation is important to distinguish a healthy state from a disease state. Several studies have demonstrated an increase of carbonylated plasma proteins in athletes after exercise, but none have identified targets of this oxidation. Recently a process of protein decarbonylation has been discovered, this may indicate that carbonylation could be involved in signal transduction. The aim of our research was to characterize plasma protein carbonylation in response to physical exercise in trained male endurance athletes. We analyzed by proteomic approach their plasma proteins at resting condition and after two different kinds of physical exercise (PE). We used 2D-GE followed by western blot with specific antibodies against carbonylated proteins. The 2D analysis identified Haptoglobin as potential protein target of carbonylation after PE. We also identified Serotransferrin and Fibrinogen whose carbonylation is reduced after exercise. These methods have allowed us to obtain an overview of plasma protein oxidation after physical exercise.  相似文献   
10.
The pituitary corticotrope-derived AtT20 D16V cell line responds to nerve growth factor (NGF) by extending neurite-like processes and differentiating into neurosecretory-like cells. The aim of this work is the study of the effect of extremely low frequency electromagnetic fields (ELF-EMF) at a frequency of 50 Hz on these differentiation activities. To establish whether exposure to the field could influence the molecular biology of the cells, they were exposed to a magnetic flux density of 2 milli-Tesla (mT). Intracellular calcium ([Ca2+]i) and intracellular pH (pHi) were monitored in single exposed AtT20 D16V cells using fluorophores Indo-1 and SNARF for [Ca2+]i and pHi, respectively. Single-cell fluorescence microscopy showed a statistically significant increase in [Ca2+]i followed by a drop in pHi in exposed cells. Both scanning electron microscopy (SEM) and transmission microscopy of exposed AtT20 D16V cells show morphological changes in plasma membrane compared to non-exposed cells; this modification was accompanied by a rearrangement in actin filament distribution and the emergence of properties typical of peptidergic neuronal cells-the appearance of secretory-like granules in the cytosol and the increase of synaptophysin in synaptic vesicles, changes typical of neurosecretory-like cells. Using a monoclonal antibody toward the neurofilament protein NF-200 gave additional evidence that exposed cells were in an early stage of differentiation compared to control. Pre-treatment with 0.3 microM nifedipine, which specifically blocks L-type Ca2+ channels, prevented NF-200 expression in AtT20 D16V exposed cells. The above findings demonstrate that exposure to 50 Hz ELF-EMF is responsible for the premature differentiation in AtT20 D 16 V cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号